PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological aspects of synthesis of poly(ethylene glycol) mono-1-propenyl ether monomers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the first time, the technological aspects of the highly productive and selective synthesis of UV-reactive poly(ethylene glycol) mono-1-propenyl ether monomers was developed. The solvent-free isomerization of model commercial available 2-allyloxyethanol and allyloxypoly(ethylene glycol) derivatives, type Allyl–[OCH2CH2]n–OH, n = 1–5, into a 1-propenyl derivative under the homogeneous catalysis conditions using the ruthenium complexes were evaluated. The effect of a various reaction conditions (i.e. the concentration of [Ru] complex, the reaction temperature, reaction gas atmosphere) together with trace amounts of allyl hydroperoxides formed via autoxidation reaction of allyl substrates on the productivity of catalyst was examined in detail. Moreover, the significant role of the allyl substrate structures on the catalytic activity of ruthenium catalysts were also recognized. The optimal parameters of the scaled-up synthesis together with productivity of catalyst were first established.
Rocznik
Strony
55--63
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Material, 42 Piastów Avenue, 71-065, Szczecin, Poland
Bibliografia
  • 1. Fink, J.K. (2013). Reactive polymers fundamentals and applications. A concise guide to industrial polymers (2nd ed.) New York: William Andrew Inc;.
  • 2. Wicks, Z.W., Jones, F.N., Pappas, S.P. & Wicks, D.A. (2007). Organic Coatings: Sci. Technol. (3rd ed.) New Jork: Wiley-Interscience.
  • 3. Mishra, M. & Yagci, Y. (2009). Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology (2nd ed.) New York: CRC Press Taylor & Francis Group.
  • 4. Crivello, J. & Jo, K. (1993). Propenyl ethers. I. The synthesis of propenyl ether monomers. J. Polym. Sci. Part A: Polym. Chem. 31, 1473–1482. DOI: 10.1002/pola.1993.080310616.
  • 5. Behr, A. & Neubert, P. (2012). Appl. Homogen. Catal. (1st ed.) Weinheim: Wiley-VCH.
  • 6. McGrath, D.V. & Grubbs, R.H. (1994). The mechanism of aqueous ruthenium(II)-catalyzed olefi n isomerization. Organometallics 13, 224–235. DOI: 10.1021/om00013a035.
  • 7. Kuźnik, N. & Krompiec, S. (2007). Transition metal complexes as catalysts of double-bond migration in O-allyl systems. Coord. Chem. Rev. 251, 222–233. DOI: 10.1016/j.ccr.2006.07.006.
  • 8. Krompiec, S., Antoszczyszyn, M., Urbala, M. & Bieg, T. (2000). Isomerization of Allyl Ethers of Diols and Triols Catalyzed by Ruthenium Complexes. Pol. J. Chem. 74, 737–739. DOI: 10.1002/chin.200034023.
  • 9. Krompiec, S., Kuźnik, N., Urbala, M. & Rzepa, J. (2006). Isomerization of Alkyl Allyl and Allyl Silyl ethers catalysed by ruthenium complexes. J. Mol. Catal. A: Chem. 248, 198–209. DOI: 10.1016/j.molcata.2005.12.022.
  • 10. Urbala, M., Kuźnik, N., Krompiec, S. & Rzepa, J. (2004). Highly Selective Isomerization of Allyloxyalcohols to Cyclic Acetals or 1-Propenyloxyalcohols. Synlett. 7, 1203–1026. DOI: 10.1055/s-2004-825597.
  • 11. Urbala, M. (2005). The study on the reaction of 4-allyloxybutane-1-ol with ruthenium (II) complexes. Pol. J. Chem. Technol. 7, 48–50.
  • 12. Urbala, M., Krompiec, S., Penkala, M., Danikiewicz, W. & Grela, M. (2013). Solvent-free Ru-catalyzed isomerization of allyloxyalcohols: methods for highly selective synthesis of 1-propenyloxyalcohols. Appl. Catal. A Gen. 451, 101–111. DOI: 10.1016/j.apcata.2012.11.009.
  • 13. Urbala, M. (2010). The effectiveness of ruthenium(II) complexes and ruthenium trichloride as pre-catalysts in solventfree isomerization of model alkyl allyl ether. Appl. Catal. A Gen. 377, 27–34. DOI: 10.1016/j.apcata.2010.01.010.
  • 14. Urbala, M. (2015). Solvent-free [Ru]-catalyzed isomerization of allyl glycidyl ether: The scope, effectiveness and recycling of catalysts, and exothermal effect. Appl. Catal. A Gen. 505, 382–393. DOI: 10.1016/j.apcata.2015.08.012.
  • 15. Martysz, D., Urbala, M., Antoszczyszyn, M. & Pilawka, R. (2002). l-Propenyl ethers of butanediol as effective modifiers of UV-cured epoxy coatings in cationic polymerization. Polimery. 11–12, 849–851. DOI: 10.14314/polimery.2002.849.
  • 16. Martysz, D., Antoszczyszyn, M., Urbala, M., Krompiec, S. & Fabrycy, E. (2003). Synthesis of 1-propenyl ethers and their using as modifiers of UV-cured coatings in radical and cationic polymerization. Prog. Org. Coat. 46, 302–311. DOI: 10.1016/S0300-9440(03)00018-3.
  • 17. Czech, Z., Urbala, M. & Martysz, D. (2004). New generation of cationically UV-cured epoxy adhesives containing dyes. Polimery 7–8, 561–564. DOI: 10.14314/polimery.2004.561.
  • 18. Czech, Z. & Urbala, M. (2004). Application of novel unsaturated organosilane ethers in cationic UV-crosslinkable acrylic PSA systems. Polimery 11–12, 837–840. DOI: 10.14314/polimery.2004.837.
  • 19. Czech, Z. & Urbala, M. (2007). UV-crosslinked acrylic pressure-sensitive adhesive systems containing unsaturated ethers. Polimery 6, 438–442.
  • 20. Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F.R. & Frey, H. (2016). Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 116, 2170−2243. DOI: 10.1021/acs.chemrev.5b00441.
  • 21. Li, Z. & Chau, Y. (2011). A facile synthesis of branched poly(ethylene glycol) and its heterobifunctional derivatives. Polym. Chem. 2, 873–878. DOI: 10.1039/C0PY00339E.
  • 22. Vansteenkiste, S., Matthijs, G., Schacht, E., De Schrijver, F.C., Van Damme, M. & Vermeersch, J. (1999). Preparation of Tailor-Made Multifunctional Propenyl Ethers by Radical Copolymerization of 2-(1-Propenyl)oxyethyl Methacrylate. Macromolecules 32(1), 55–59. DOI: 10.1021/ma980458+.
  • 23. Thi, T.T.H., Pilkington, E.H., Nguyen, D.H., Lee, J.S., Park, K.D. & Truong, N.P. (2020). The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298–319. DOI: 10.3390/polym12020298
  • 24. Ota K., Kai K. & Uchida H., JP 2000143567 (2000) to Showa Denko K. K., Japan.
  • 25. Kuo, L.Y. & Delaney, F.E. (2015). Catalytic isomerization of allyl functionalities in water by hexaaquaruthenium(II) tosylate. Inorg. Chim. Acta, 435, 335–339. DOI: 10.1016/j.ica.2015.07.001.
  • 26. Pertici, P., Malanga, C., Guintoli, A., Vitulli, G. & Martra, G. (1996). The (η6 -naphthalene)(η4 -cycloocta-1,5-diene) ruthenium(0) complex as precursor for homogeneous and heterogeneous catalysts in the isomerization of allyl ethers and allyl acetals to vinyl derivatives. Gazz. Chim. Ital. 126, 587–593.
  • 27. The energy minimized structures of allylalcohol substrates were generated via molecular mechanics of MM2 program in Chem3D Pro software (in ChemBioDraw Ultra 13.0 Cambridge software) using the set functions.
  • 28. Plausible structure of complexes formed via temporary coordination of ruthenium by 2-allyloxyethanol or 2-[2-(allyloxy)etoxy]ethanol were determined in ChemSketch (ACD/Labs 2018.1.1 software) with using 3D optimization function.
  • 29. Winterton, N. (2011). Chemistry for Sustainable Technologies: A Foundation. London: RSC Publishing.
  • 30. Dunn, P.J., Hii, K.K., Krische, M.J. & Williams, M.T. (2013) Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries. New York: John Wiley & Sons.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-991a05eb-5336-4a5d-97ce-9317dc56bab6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.