PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity analysis of the dem model numerical parameters on the value of the angle of repose of lunar regolith analogs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The discrete element method (DEM) is a numerical technique used in many areas of modern science to describe the behavior of bulk materials. Terramechanics of planetary soil analogs for in situ resource utilization activities is a research field where the use of DEM appears to be beneficial. Indeed, the close-to-physics modeling approach of DEM allows the researcher to gain much insight into the mechanical behavior of the regolith when it interacts with external devices in conditions that are hard to test experimentally. Nevertheless, DEM models are very difficult to calibrate due to their high complexity. In this paper, we study the influence of fundamental model parameters on specific simulation outcomes. We provide qualitative and quantitative assessments of the influence of DEM model parameters on the simulated repose angle and computational time. These results help to understand the behavior of the numerical model and are useful in the model calibration process.
Słowa kluczowe
Rocznik
Strony
188--202
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • Barreto, D., Leak, J. (2021). Chapter 4 - A guide to modeling the geotechnical behavior of soils using the discrete element method, Modeling in geotechnical engineering eds. Samui P., Kumari S., Makarov V., Kurup P. Academic Press, 79-100.
  • Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 120; 122-125.
  • Calle, C.I., Buhler, C.R. (2020). Measurement of the angle of repose of apollo 14 lunar sample 14163, Lunar Dust 2020 (LPI Contrib, No. 2141).
  • Chen, H., Zhao, S., Zhou, X. (2020). DEM investigation of angle of repose for super-ellipsoidal particles, Particuology, Vol.50, 53-66.
  • Elekes, F., Parteli, R. (2021). An expression for the angle of repose of dry cohesive granular materials on Earth and in planetary environments, Proceedings of the National Academy of Sciences, Vol. 118 (38).
  • International Organization for Standardization. (1977). Surface active agents - Powders and granules - Measurement of the angle of repose.
  • Jiang, M., Xi, B., Arroyo, M., Rodriguez-Dono, A. (2017) DEM simulation of soil-tool interaction under extraterrestrial environmental effects, Journal of Terramechanics, Vol. 71, 1-13.
  • Just, G.H., Smith, K., Joy, K.H., Roy, M.J. (2020) Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments, Planetary and Space Science, Vol. 180, 104746.
  • Kobaka J., Katzer, J., Seweryn, K., Srokosz, P., Bujko, M. (2023)A study of lunar soil simulants from construction and building materials perspective. Case Studies in Construction Materials, Vol. 18, e02082.
  • Knuth M.A., Johnson, J.B., Hopkins, M.A., Sullivan, R.J., Moore, J.M. (2012) Discrete Element Modeling of a Mars Exploration Rover wheel in granular material, Journal of Terramechanics, Vol. 49, 27-36.
  • Li, C., Yin, H., Wu, C., Zhang, Y., Zhang, J., Wu, Z., Wang, W., Jia, D., Guan, S., Ren, R. (2021) Calibration of the Discrete Element Method and Modeling of Shortening Experiments, Frontiers in Earth Science, Vol. 9, 636512.
  • Liu, T., Liang, L., Zhao, Y., Dengqing, C. (2020). An alterable constitutive law of highaccuracy DEM model of lunar soil, Advances in Space Research, Vol. 66, 1286-1302.
  • Myers, R., Montgomery, D., Anderson-Cook, C. (2016). Response Surface Methodology, Process and Product Optimization using Design Experiments (Fourth Edition), Wiley.
  • Saltelli, A., Tarantola, S., Capolongo, F., Ratto, M. (2004) Sensitivity analysis in practice: a guide to assessing scientific models, John Willy & Sons.
  • Sanchez P., Scheeres, D.J. (2020) Cohesive regolith on fast rotating asteroids, Icarus, Vol 330, 113443.
  • Schwager, T., Pöschel, T. (2007) Coefficient of restitution and linear-dashpot model revisited, Granular Matter, Vol. 9, 465-469.
  • Wang, X., Zhang, Q., Huang, Y., Ji, J. (2022) An efficient method for determining DEM parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models, Biosystems engineering, Vol. 215, 283-294.
  • Wilkinson, A.; DeGennaro, A. (2007) Digging and pushing lunar regolith: Classical soil mechanics and the forces needed for excavation and traction, Journal of Terramechanics, Vol. 4(2), 133-152.
  • Xi, B., Jiang, M., Cui, L., (2021) 3D DEM analysis of soil excavation test on lunar regolith simulant, Granular Matter, Vol. 23 (1).
  • Zhu, L., Zou, M., Liu, Y., Gao, K., Su, B., Qi, Y. (2022) Measurement and calibration of DEM parameters of lunar soil simulant, Acta Astronautica, Vol. 191, 169-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9919600d-0b81-402a-963a-64e71cc4a825
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.