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ABSTRACT. The discrete element method (DEM) is a numerical technique used in many areas 

of modern science to describe the behavior of bulk materials. Terramechanics of planetary soil 

analogs for in situ resource utilization activities is a research field where the use of DEM 

appears to be beneficial. Indeed, the close-to-physics modeling approach of DEM allows the 

researcher to gain much insight into the mechanical behavior of the regolith when it interacts 

with external devices in conditions that are hard to test experimentally. Nevertheless, DEM 

models are very difficult to calibrate due to their high complexity. In this paper, we study the 

influence of fundamental model parameters on specific simulation outcomes. We provide 

qualitative and quantitative assessments of the influence of DEM model parameters on the 

simulated repose angle and computational time. These results help to understand the behavior 

of the numerical model and are useful in the model calibration process.  
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1. INTRODUCTION 

The growing interest in planetary in situ resources utilization (ISRU) activities opens new 

frontiers to the design of space mining equipment. The development of space technologies is 

generally very costly and time-consuming because standard design approaches used in 

terrestrial applications are not fully applicable to extraterrestrial scenarios. It has been observed 

that while pressure, radiation, and temperature conditions existing in space are relatively simple 

to reproduce on Earth, low-gravity conditions are very difficult to recreate (Wilkinson and 

DeGennaro, 2007; Just et al., 2020). On the other hand, the reduced gravity of celestial bodies 

such as Mars and Moon would surely affect the in situ excavation process due to the peculiar 

interaction between soil particles and machine elements. It is one of the reasons why the design 

of tools for space applications is very challenging.  

The discrete element method (DEM) was originally developed in the mining industry to 

examine rock mechanics problems. Growing in popularity, DEM has been applied to many 

other fields of science and engineering (Barreto and Leak, 2021). The possibility of easily 

modeling an environment with different gravity levels has also attracted the attention of 
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scientists working on terramechanical problems in space. For example, an alterable DEM model 

of lunar soil was presented by Liu et al. (2020). The authors validated the model by comparing 

triaxial test simulations with those obtained from physical experiments. In Jiang et al. (2017), 

DEM simulations of soil cutting tests performed under different gravity conditions were 

examined. DEM modeling of a lunar soil simulant was also proposed in Xi et al. (2021). In Li 

et al. (2021), analog method experiments, which have a long history in tectonic modeling, were 

used to calibrate DEM models by comparing the granular structures formed during experiments 

with those yielded by DEM simulations.  

In this paper, we present a study conducted within an ISRU project whose one of the tasks is 

the analysis by DEM of the mechanical behavior of the lunar soil under conditions of reduced 

gravity. Our modeling activities commenced with the creation of a DEM analog of a repose 

angle test built in-house. Comparing the results of the physical model with its digital twin allows 

us to calibrate and validate the model and use it for prediction. However, the calibration phase 

is not trivial. DEM models are complex and have numerous parameters to tune. The 

terramechanical phenomena they describe are also complex, highly nonlinear, and not easily 

repeatable. Thus, the calibration phase can be preceded and supported by a sensitivity analysis, 

which gives insight into the model behavior when changing its parameters. In this context, past 

research includes the assessment of the influence of the size and shape of DEM grain parameters 

(Elekes and Parteli, 2021), the friction coefficient (Li et al., 2021), the damping coefficient 

(Jiang et al., 2017; Xi et al., 2021), and the friction and restitution coefficients (Zhu et al., 2022; 

Wang et al., 2021) on the angle of repose (AR) in a repose angle test model. The research 

conducted so far is extensive, but not exhaustive in any way. In this article, we present a new 

sensitivity analysis that investigates the influence of a large set of DEM parameters on both AR 

and the simulation time. We adopt the Morris method (Saltelli et al., 2004) and the stepwise 

regression (Myers et al. 2016) for the sensitivity assessment. Both analyses represent the first 

step of a broader ongoing model calibration activity.  

The paper is structured as follows. Section 2 describes the DEM model of the repose angle test. 

Section 3 illustrates the results of the sensitivity analysis. Section 4 provides a short summary 

and highlights future research. 

2. REPOSE ANGLE TEST DEM MODEL 

A repose angle experiment is a simple test which allows the researcher to assess some 

fundamental mechanical properties of the soil related to the inter-particle friction. The test 

consists of dropping soil on a horizontal plate from a funnel located above it. The soil piles up 

on the plate with a cone-like shape. AR is the angle that the side of the soil pile forms with the 

plate. The three-dimensional DEM model we prepared simulates a repose angle test. The model 

is made in ANSYS/Rocky software. Below, we present details of this model. 

2.1. Model setup 

The geometrical model is composed of three rigid elements: a circular plate, a funnel, and a 

cap, as presented in Figure 1. These elements have properties compliant with the ISO-4324-

1977 standard. The main steps of a DEM repose angle simulation are (refer to Figure 2) as 

follows. The bulk of soil is generated inside the funnel volume (1). The particles settle down 

and fill the bottom of the funnel volume, while the cap is closed (2). The funnel cap is removed, 

and the particles start to flow down and pile up on the plate (3). The simulation ends when a 

minimum kinetic energy criterion is met (4). The AR is then calculated via post-processing 

simulation results. 
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Figure 1. Geometrical setup for the DEM repose angle test in three views 

 

Figure 2. Subsequent steps of the repose angle test 

The bulk mechanical properties we adopted in our model relate to the JSC-1A (Johnson Space 

Center Number One) regolith analog (Liu et al., 2020) and are listed in Table 1.  

Table 1. Particles’ material parameters 

  

 

 

 

2.2. Calculation of AR 

AR is obtained from DEM results by means of a Python script that uses the OpenCV library 

developed by Bradski et al. (2000). The script fits a line to the pile contour at multiple cross 

sections, calculates the slopes of the fitted lines, and averages them. In this process, the upper 

and lower regions of the contours are cropped. The height of these regions is at least 10 times 

the particle size, as proposed by Chen et al. (2019). It excludes the influence of factors related 

to the impact of particles at the top, as well as the friction of the table. Profile fitting is based 

on the M-estimator technique with the use of a Welsch function as the distance type. An 

example of application of the method is presented in Figure 3. 

 

Parameter Value 

Density (bulk density) (kg/m3) 2900 (1740) 

Young's modulus (MPa) 45 

Poisson's ratio (-) 0.5 
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Figure 3. Example of the 3D DEM obtained pile (A), averaged particles pile (B),  

and the result of the angle of repose evaluation (C) 

2.3. DEM contact force models 

Simulation results strongly depend on the contact model that is employed. ANSYS/Rocky 

includes different contact models for normal and tangential forces and rolling resistant torque. 

We examined in our analysis three different models of normal forces, two models of tangential 

forces, and a model of rolling resistance. A synthetic description of these models is provided 

below. 

2.3.1. Normal forces 

Hysteretic linear spring model. In this model, the normal forces are calculated in two different 

ways, depending on the value of the normal contact overlap (NCO). NCO is defined as the 

difference between the normal overlap values of successive simulation time steps. When the 

NCO is positive, the normal force is calculated from (1), otherwise from (2). 

 𝐹𝑛
𝑡 = min(𝐾𝑛𝑙 ∙ 𝑠𝑛

𝑡 , 𝐹𝑛
𝑡−∆𝑡 + 𝐾𝑛𝑢 ∙ ∆𝑠𝑛)  (1) 

 𝐹𝑛
𝑡 = max(𝜆 ∙ 𝐾𝑛𝑙 ∙ 𝑠𝑛

𝑡 , 𝐹𝑛
𝑡−∆𝑡 + 𝐾𝑛𝑢 ∙ ∆𝑠𝑛)  (2) 

In (1) and (2), 𝐹𝑛
𝑡 denotes the normal force at time 𝑡, Δ𝑡 the simulation time step, 𝑠𝑛

𝑡  the NCO, 

Δsn the change of NCO, and 𝜆 is (usually) a small empirical constant (in this study, its value is 

set to 0.001). 𝐾𝑛𝑙 and 𝐾𝑛𝑢 are the loading and unloading contact stiffnesses, respectively, 

defined as: 

 𝐾𝑛𝑙 = 𝐸 ∙ 𝐿  (3) 

 𝐾𝑛𝑢 =
𝐾𝑛𝑙

𝜀2
 (4) 

where 𝜀 is the coefficient of restitution, 𝐿 the particle size, and 𝐸 the Young’s modulus. 

Linear spring dashpot model. In this model, normal forces are given by 

 𝐹𝑛 = 𝐾𝑛𝑙 ∙ 𝑠𝑛 + 𝐶𝑛 ∙ �̇�𝑛 (5) 

with 𝐶𝑛 denoting the damping coefficient calculated by 

 𝐶𝑛 = 2 ∙ 𝜂 ∙ √𝑚∗ ∙ 𝐾𝑛𝑙 (6) 
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In (6), 𝑚∗ is the effective mass of the contact and 𝜂 is the damping ratio obtained by solving 

(7)–(9) by means of the numerical procedure described in Schwager and Pöschel (2007). 

 𝜀 = 𝑒

[−
𝜂

√1−𝜂2
∙(𝜋−arctan

2∙𝜂∙√1−𝜂2

1−2∙𝜂2 )]

     for 0 ≤ 𝜂 ≤ 
1

√2
 (7) 

 𝜀 = 𝑒

[−
𝜂

√1−𝜂2
∙(arctan

2∙𝜂∙√1−𝜂2

2∙𝜂2−1
)]

        for 
1

√2
 ≤ 𝜂 ≤ 1 (8) 

                                     𝜀 = 𝑒

[−
𝜂

√𝜂2−1

∙(𝑙𝑛
𝜂+√𝜂2−1

𝜂−√𝜂2−1

)]

               for 𝜂 ≥ 1 (9) 

Hertzian spring dashpot model. This model takes the form 

 𝐹𝑛 = 𝐾𝐻 ∙ 𝑠𝑛

3

2 + 𝐶𝐻 ∙ 𝑠𝑛

1

4 ∙ �̇�𝑛 (10) 

where 𝐾𝐻 is the Hertzian contact stiffness 

 𝐾𝐻 =
4

3
∙ 𝐸∗ ∙ √𝑅∗ (11) 

and 𝐶𝐻 is the Hertzian damping coefficient given by 

 𝐶𝐻 = 2 ∙ 𝜂𝐻 ∙ √𝑚∗ ∙ 𝐾𝐻 (12) 

The parameter 𝑅∗ denotes the effective equivalent radius, while 𝐸∗ and 𝜂𝐻 are additional 

coefficients calculated from 

 
1

𝐸∗ =
1−𝑣1

2

𝐸1
+

1−𝑣2
2

𝐸2
 (13) 

 𝜂𝐻 =
√5

2
∙ 𝜂 (14) 

where 𝑣 is the Poisson’s ratio. 

2.3.2. Tangential forces 

Mindlin–Deresiewicz model. In this model, tangential forces are expressed by 

 𝐹𝑇 = −𝑓 ∙ 𝐹𝑛 ∙ (1 − (1 −
min(|𝑠𝑇|,𝑠𝑇,max)

𝑠𝑇,max
)

3

2
) ∙

𝑠𝑇

|𝑠𝑇|
+ 𝜂𝑇 ∙ √

6∙𝑓∙𝑚∗∙𝐹𝑛

𝑠𝑇,max
∙ (1 −

min(|𝑠𝑇|,𝑠𝑇,max)

𝑠𝑇,max
)

1

4
∙ �̇�𝑇

 (15) 

where 𝑓 is the friction coefficient, 𝑠𝑇 is the tangential displacement, and 𝜂𝑇 is the tangential 

damping ratio calculated as 

 𝜂𝑇 =
ln 𝜀

√ln2 𝜀+𝜋2
 (16) 

The maximum relative tangential displacement 𝑠𝑇,max is defined by 

 𝑠𝑇,max = 𝑓 ∙ (
1−𝑣1

2−𝑣1
+

1−𝑣2

2−𝑣2
)

−1

∙ 𝑠𝑛 (17) 

This model works only with the Hertzian spring dashpot model. 
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Linear spring Coulomb limit model. In this model, the tangential force is elastic-frictional. 

Its expression is 

 𝐹𝑇
𝑡 = min(|𝐹𝑇,𝑒

𝑡 | , 𝑓𝐹𝑛
𝑡) ∙

𝐹𝑇,𝑒
𝑡

|𝐹𝑇,𝑒
𝑡 |

 (18) 

where the elastic tangential force is described by 

 𝐹𝑇,𝑒
𝑡 = 𝐹𝑇

𝑡−Δ𝑡𝐾𝑇 ∙ ∆𝑠𝑇 (19) 

with 𝐾𝑇 denoting the tangential stiffness, which, in turn, depends on 𝐾𝑛𝑙 and the tangential 

stiffnes ratio 𝑟𝐾 according to the equation 

 𝐾𝑇 = 𝑟𝐾 ∙ 𝐾𝑛𝑙 (20) 

2.3.3. Rolling resistance model 

All simulations that we ran used a linear spring rolling limit model. The resistant moment is 

calculated by 
 

 𝑀𝑟
𝑡 = min (|𝑀𝑟,𝑒

𝑡 |, 𝑀𝑟,lim) ∙
𝑀𝑟,𝑒

𝑡

|𝑀𝑟,𝑒
𝑡 |

 (21) 

 

where 𝑀𝑟,𝑒
𝑡  denotes the pure elastic rolling resistance moment 

 𝑀𝑟,𝑒
𝑡 = 𝑀𝑟

𝑡−Δ𝑡 − 𝐾𝑟 ∙ 𝜔rel ∙ Δ𝑡 (22) 

and 𝑀𝑟,lim is a factor that limits the maximum value of the rolling resistance moment by 

 𝑀𝑟,lim = 𝑓𝑟 ∙ 𝑅𝑟 ∙ 𝐹𝑛 (23) 

In (22), 𝜔rel is the relative angular velocity of the grain, 𝑅𝑟 the particle rolling radius, 𝑓𝑟 the 

rolling resistance coefficient, and 𝐾𝑟 the rolling stiffness given by 

 𝐾𝑟 = 𝑅𝑟
2 ∙ 𝐾𝑇 (24) 

3. SENSITIVITY ANALYSIS 

The model described in Section 2 entails many parameters. Past research and initial model 

examination evidenced a subset of parameters that are expected to largely affect the simulation 

results. This subset includes the friction coefficient (f), the tangential stiffness ratio (rK), the 

restitution coefficient (𝜀), and the rolling resistance coefficient (fr). The friction coefficient and 

the tangential stiffness are the main parameters for tangential forces. The restitution coefficient 

is responsible for the nature of the collision. When its value is 1, the contact is perfectly elastic; 

when it is 0, the contact is perfectly rigid. The rolling resistance affects the particle moment and 

permits to partially include in the model the torque caused by nonspherical grains while using 

spherical particles. Furthermore, the addition of adhesive forces to the model (the model of the 

adhesive force is not described in Section 2) brings two other relevant parameters. They are the 

adhesive distance (δadh) and the force fraction (fadh). The adhesive distance defines the distance 

of the application of adhesive forces, whereas the force fraction is a dimensionless parameter 

that determines the fraction of the adhesive force that will be used in the calculations. The 

literature review shows that including adhesive forces in the model is particularly important for 

low-gravity conditions (Jiang et al., 2017).  

The shape and size of the particles are parameters that also play a big role in the model behavior 

(see, e.g., Elekes and Parteli, 2021). The lunar regolith analog is a heterogeneous material with 
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grains of various shapes and sizes. However, the implementation of variable particle shapes and 

sizes results in models that are cumbersome from a computational point of view. Since the final 

goal of this research is the creation of a large model that simulates the entire excavation process, 

the possibility of using only spherical particles is of interest. This research focuses on particles 

with a spherical shape and uniform size. Further research will examine whether this assumption 

is admissible or it leads to an unacceptably poor description of the physical behavior of the soil 

dynamics. Notwithstanding the uniformity of the particles, the impact of their size was 

analyzed. We initially performed experiments with variable particle size, while keeping all 

other parameters fixed. In general, it is expected that reducing the size can improve the ability 

of the model to replicate the physics of the terramechanical phenomena, but, on the downside, 

it increases the computational time. Thus, the best simulation time/simulation accuracy trade-

off is to be chosen. 

3.1. Analysis of the grain size 

This preliminary study involved particles with six different diameters ranging from 0.75 to 2 

mm. The other contact model parameters considered to be highly influential were set to the 

values listed in Table 2. 

Table 2. Materials’ interaction parameters used in the grain size and contact model analyses 

Parameter Particle–particle Particle–boundary 

Static friction (-) 0.7 0.7 

Dynamic friction (-) 0.7 0.7 

Tangential stiffness ratio (-) 1 1 

Adhesive distance (m) 0.0001 0.0001 

Force fraction (-) 0.2 0 

Restitution coefficient (-) 0.2 0.3 

The results of the repose angle test simulations for all particle sizes are presented in Table 3 

and Figure 4. They show that AR tends to decrease with particle size. Observing AR versus the 

particle size diagram of Figure 4, we note that the AR values at particle sizes of 1.75 and 0.75 

mm do not follow the trend because they are affected by the “avalanching effect”. This effect 

occurs when AR of the pile is exceeding because of the addition of a large amount of granular 

matter to the top of the pile. Then the soil becomes unstable and, losing its shear strength, 

undergoes a rapid flow or sliding. If the simulation were stopped at the very moment of its 

occurrence or right after it would yield AR that are artificially greater (in the first case) or 

smaller (in the second case). This effect, poorly documented in the literature, is under further 

investigation. The computational time versus particle size diagram shows a typical inversely 

proportional relationship that is highlighted in the plot with a red dashed line. If we assume that 

the model accuracy always increases with the particle size reduction, then the constraint for the 

size is given only by the computational time. Looking at the time versus size plot of Figure 4, 

it seems that a particle size of 1.5 mm can provide a good trade-off between these two 

parameters; therefore, it has been chosen in the next simulations.  
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Table 2. Results of the 4 s of the repose angle test simulations 

Particle diameter 

(mm) 

Number of particles 

(no.) 
AR value (°) Calculation time 

(min) 

0.75  156,106 42.89 1032 

1.00  65,858 39.68 310 

1.25  33,719 41.52 524 

1.50  19,514 43.00 82 

1.75  12,289 48.26 188 

2.00  8233 45.07 36 

 

Figure 4. Angle of repose versus particle size (left) and computational time versus particle size (right) 

diagrams from the simulation results 

3.2. Influence of contact models 

The configurations of the contact models described in Section 2 that we examined are as 

follows:  

• Hertzian spring dashpot | Mindlin–Deresiewicz; 

• Hertzian spring dashpot | Linear spring Coulomb limit; 

• Linear spring dashpot | Linear spring Coulomb limit; and 

• Hysteretic linear spring | Linear spring Coulomb limit. 

Other combinations are not possible because the Mindlin–Deresiewicz tangential model works 

only with the Hertzian spring dashpot normal model. The simulation results we obtained are 

given in Tabs 4 and 5. The goal of this analysis is to find an adequate contact model that ensures, 

at the same time, feasible computational time. The criterion we used for assessing the model 

adequacy is the comparison of its AR prediction with a documented value for JSC-1A. This 

value oscillates between 37 and 41 (Calle and Buhler, 2020; Kobaka et al., 2023). The 

simulations we performed show that the utilization of the linear spring dashpot yielded an AR 

that is sensibly larger than the reference value. Differently, both the hysteric linear spring and 

the Hertzian model provide similar results, although the former requires twice the 

computational time of the latter. Thus, we could conclude that the Hertzian spring dashpot–
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Linear spring Coulomb limit contact model combination should be used in the future. It should 

be noted that the criterion we used to assess the model fidelity has evident flaws in the fact that 

it was employing a model with non-tuned parameters and it was run of a single model 

configuration. Nevertheless, the validity of our choice of contact models is demonstrated in 

previous research, as, for instance, in Knuth et al. (2012) and Sanchez and Scheeres (2020). 

Table 3. AR for different DEM contact models 

Tangential forces 

models 

Normal forces models 

Hertzian spring 

dashpot 

Linear spring 

dashpot 

Hysteretic linear 

spring 

Mindlin–Deresiewicz 42.58 - - 

Linear spring 

Coulomb limit 
43.00 45.03 41.40 

The AR values are expressed in degrees. 

Table 4. Computation time for different DEM contact models 

Tangential forces 

models 

Normal forces models 

Hertzian spring 

dashpot 

Linear spring 

dashpot 

Hysteretic linear 

spring 

Mindlin–Deresiewicz 117.73 - - 

Linear spring 

Coulomb limit 
122.93 181.41 237.09 

The CPU time is in min. 

3.3. Influence of contact model parameters 

We examined the influence of contact model parameters on AR through two numerical tools: 

the Morris parameter screening method and a linear regression built using a stepwise method. 

In these analyses, the parameters are assumed to vary within the ranges defined in Table 6. 

Table 5. Ranges of variability of the contact model parameters used in the sensitivity analysis 

 Parameter Lower limit Upper limit 

p1 Friction coefficient (f) 0.2 0.5 

p2 Adhesive distance (δadh) 0.0005 0.0015 

p3 Force fraction (fadh) 0.1 0.4 

p4 Restitution coefficient (𝜀) 0.1 0.4 

p5 Rolling resistance (fr) 0.2 0.8 

p6 Tangential stiffness ratio (rK) 0.2 1.0 

3.4. Morris method 

The Morris method is a sample-based procedure that performs a global sensitivity analysis. This 

method is reported to yield qualitative results with a reduced number of simulations. In the 
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Morris method, the samples are randomly picked from a regular hyper-grid according to a one-

variable-at-the-time scheme. This sampling procedure defines a set of trajectories that try to 

uniformly cover the whole parameter space. The simulation responses are processed, and two 

summary sensitivity metrics are calculated for every model parameter (also called factor): the 

elementary effect mean, µ, and the elementary effect standard deviation, σ. Large µ values 

indicate a global influence of the parameter. The larger the σ value, the larger the nonlinearity 

of the parameter or its interaction with another parameter(s). In this work, a Morris setup with 

six-level hyper-grid and seven trajectories was employed. It resulted in 49 different sample 

points. The parameter configurations and simulation results for all sample points are given in 

Table 7 of the Appendix. The two resultant Morris metrics for the repose angle and the 

simulation time, normalized to their maximum values, are presented in the plots of Figs 5 and 

6, respectively.  

 

Figure 5. Morris plot of the repose angle. The diagram shows that the rolling resistance is the most 

important factor with a significant linear correlation with the repose angle. 

Figure 5 shows that all parameters, except the tangential stiffness ratio, sensibly affect the 

repose angle, but the rolling resistance and the friction coefficient stand out for their level of 

importance. However, the rolling resistance appears to be more linearly correlated with AR 

than the friction coefficient. The simulation time appears to be highly and linearly correlated 

with the adhesive distance. 
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Figure 6. Morris plot of the simulation time. The diagram shows that the adhesive distance is the 

predominant factor on the simulation time. 

3.5. Stepwise regression 

Stepwise regression is a smart way to build regression models without prior definition of the 

shape of the approximation model. The method progressively inserts and removes regressors 

(from a defined set of candidates) into the approximation until no further improvement is 

observed in the regression. This sequential procedure usually yields a response surface that well 

captures the response behavior with a limited number of regressors, therefore eliminating the 

overfitting problem. In this study, we used the 49 sample points of the Morris analysis to build 

the regression model. The candidate regressors were linear, quadratic, and two-way interaction 

terms. The regression model of AR obtained with the stepwise regression takes the form  

 AR = 30.1 + 22.1𝑥1 + 7.2𝑥2 + 5.9𝑥3 + 5.4𝑥5 + 13𝑥1𝑥5 − 17.3𝑥1
2 (25) 

The regression model of the simulation time 𝑇 is 

 𝑇 = 6400 − 973𝑥1 + 3163𝑥2 − 637𝑥1𝑥2 + 591𝑥1
2 + 3092𝑥2

2 (26) 

The regression variables in (25) and (26) read as follows: 

• 𝑥1: coded variable representing the friction coefficient parameter 

• 𝑥2: coded variable representing the adhesive distance 

• 𝑥3: coded variable representing the friction force 

• 𝑥5: coded variable representing the rolling resistance 

A coded variable is the variable obtained by rescaling the physical parameter range, to a [0, 1] 

range. Using coded variables permits to directly read the influence of a regressor on the 

response by looking at its associated coefficient. Relative comparison of the regressor 

coefficients shows good agreement with the Morris sensitivity analysis. The accuracy of the 

regression models can be assessed by the coefficient of multiple determination. The calculated 

coefficients are 0.86 and 0.99 for the AR and T models, respectively. The coefficient of multiple 

determination has a maximum value of 1, meaning that the regression models we obtained fit 

well the training data.  
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4. CONCLUSIONS 

In this article, we presented various aspects of DEM modeling for repose angle test simulations. 

At the beginning, we examined the influence of the particle size on the value of AR and the 

calculation time. Next, we performed computer simulations using different contact models to 

gain knowledge of their behavior in the tested scenario. Finally, we performed a sensitivity 

analysis to understand how six fundamental contact parameters may affect the simulation 

results. The analysis pointed out parameters that are influential in the simulation. This insight 

will be helpful in the DEM calibration phase. The analysis also revealed that repose angle test 

results may be affected by the avalanching effect, a phenomenon that is rarely documented in 

DEM calibration literature. This problem is currently under investigation.  
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APPENDIX 

Table 7. Sensitivity analysis results 
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0.2 0.0011 0.16 0.34 0.32 0.52 33.84 

0.2 0.0011 0.16 0.34 0.32 1 34.45 

0.8 0.0005 0.16 0.22 0.2 0.2 35.88 

0.2 0.0005 0.4 0.16 0.68 0.68 36.42 

0.2 0.0009 0.28 0.28 0.68 0.36 37.40 

0.2 0.0005 0.22 0.34 0.68 0.68 37.40 

0.2 0.0011 0.16 0.34 0.68 0.52 37.87 

0.2 0.0005 0.4 0.34 0.68 0.68 38.47 

0.2 0.0015 0.1 0.1 0.68 0.84 38.47 

0.8 0.0011 0.16 0.22 0.2 0.2 38.69 

0.44 0.0005 0.22 0.22 0.32 0.52 39.97 

0.8 0.0011 0.16 0.22 0.2 0.68 40.73 

0.44 0.0005 0.22 0.22 0.32 1 41.63 

0.56 0.0009 0.28 0.28 0.32 0.36 41.63 

0.32 0.0011 0.4 0.22 0.2 0.68 41.86 

0.2 0.0011 0.4 0.16 0.68 0.68 42.43 

0.32 0.0011 0.4 0.22 0.2 0.2 42.55 

0.32 0.0011 0.4 0.4 0.2 0.68 42.99 

0.44 0.0005 0.4 0.22 0.32 1 43.69 

0.8 0.0005 0.4 0.22 0.32 1 44.26 

0.44 0.0011 0.22 0.22 0.32 0.52 45.72 

0.2 0.0015 0.28 0.1 0.68 0.84 46.94 

0.8 0.0005 0.34 0.4 0.56 0.2 47.00 

0.2 0.0015 0.28 0.28 0.68 0.84 47.20 

0.2 0.0015 0.28 0.28 0.68 0.36 47.54 

0.68 0.0011 0.4 0.4 0.56 0.68 47.95 

0.44 0.0005 0.34 0.4 0.56 0.2 48.32 

0.32 0.0011 0.4 0.4 0.56 0.68 48.56 
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0.56 0.0011 0.16 0.34 0.68 0.52 48.68 

0.2 0.0015 0.4 0.34 0.44 0.36 49.37 

0.68 0.0005 0.22 0.4 0.56 0.68 49.69 

0.8 0.0005 0.16 0.22 0.56 0.2 49.86 

0.56 0.0011 0.4 0.16 0.32 0.2 50.49 

0.56 0.0009 0.4 0.16 0.44 0.84 51.93 

0.56 0.0005 0.34 0.16 0.68 0.52 52.16 

0.56 0.0015 0.4 0.34 0.44 0.84 52.42 

0.56 0.0009 0.28 0.28 0.68 0.36 52.70 

0.56 0.0009 0.22 0.16 0.8 0.84 53.48 

0.8 0.0005 0.34 0.22 0.56 0.2 53.65 

0.56 0.0009 0.4 0.34 0.44 0.84 54.97 

0.8 0.0005 0.4 0.22 0.68 1 55.15 

0.56 0.0009 0.4 0.16 0.8 0.84 57.67 

0.56 0.0015 0.4 0.34 0.44 0.36 58.06 

0.56 0.0011 0.16 0.16 0.68 0.52 59.11 

0.68 0.0011 0.22 0.4 0.56 0.68 59.65 

0.8 0.0005 0.4 0.4 0.68 1 61.26 

0.56 0.0011 0.4 0.16 0.68 0.2 61.70 

0.56 0.0011 0.4 0.16 0.68 0.68 63.71 

0.56 0.0011 0.34 0.16 0.68 0.52 64.06 

 


