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Abstract 

Geometrically nonlinear vibrations of beams with properties periodically varying along the axis are investigat-
ed. The tolerance method of averaging differential operators with highly oscillating coefficients is applied to 
obtain the governing equations with constant coefficients. The proposed model describes the dynamics of 
the beam with the effect of the microstructure size. 
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1. Introduction 

The note concerns with geometrically nonlinear vibrations of beams with periodically 
varying mass, geometric and material properties along the beam axis. Moreover, this 
beam can interact with periodically nonhomogeneous viscoelastic subsoil. A fragment of 
such beam is shown in Fig. 1. Equations of motion of such structures have usually non-
continuous, highly oscillating, periodic coefficients. Since, various averaging methods 
which lead to approximate models, determined by equations with constant coefficients, 
are applied. Among them methods based on the asymptotic homogenization can be men-
tioned, cf. [3]. 

 
Figure 1. A fragment of a periodic beam 

In this contribution, in order to replace the differential equations with highly oscillat-
ing coefficients by equations with constant coefficients, the tolerance modelling is ap-
plied. This approach was introduced for the purpose of analysis of various thermome-
chanical problems of periodic elastic composites, e.g. it was used to analyse vibrations of 
beams within the linear theory, cf. [5], where equations and their generalization by in-
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cluding influence of the axial force, an elastic subsoil and viscous damping have been 
derived in this way. 

The main aim of this note is to derive the tolerance model equations with constant 
coefficients, which describe geometrically nonlinear vibrations of periodic beams resting 
on a periodic viscoelastic foundation, with taking into account the effect of the micro-
structure size. 

2. Formulation of the problem 

The object under consideration is a linearly elastic prismatic beam, bilateraly interacting 
with a periodic viscoelastic foundation. Let Oxyz be an orthogonal Cartesian coordinate 
system, the Ox axis coincides with the axis of the beam, the cross section of the beam be 
symmetric with respect to the plane of the load Oxz, the load acts in the direction of 
the axis Oz. The problem can be treated as one-dimensional. 

The beam is assumed to be made of many repetitive small elements, called periodici-
ty cells, each of which is defined as ∆≡[−l/2,l/2], where l<<L is the length of the cell and 
named the microstructure parameter. 

Our considerations are based on the Euler-Bernoulli theory of beams. Additionally 
large transverse deflection but small deformations are assumed, cf. [4]. The effects of 
axial and rotational inertia are neglected in further considerations. Let ∂k=∂k/∂xk be the k-
th derivative of a function with respect to the x coordinate. Let the transverse deflection, 
the longitudinal displacement, tensile and flexural stiffness, the elastic coefficient of the 
foundation, the damping coefficient of the foundation, density of beam material per unit 
length, transverse load and dissipative force by w = w(x,t), u0 = u0(x,t), EA = EA(x), 
EJ = EJ(x), k = k(x), c = c(x), µ = µ(x), q = q(x,t), p = p(x,t), the system of nonlinear 
coupled differential equations for the longitudinal displacements u0 and the transverse 
deflection w can be written as: 
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The coefficients EA, EJ, k, µ, c, and in some cases the load q, are highly oscillating, 
often non-continuous functions of the x coordinate. 

3. Introductory concepts and basic assumptions of the tolerance modelling 

The averaged equations of periodic beams with large deflections are derived using 
the tolerance averaging technique, cf. [7, 8]. 

Let ∆(x)=x+∆, })(:{ Ω⊂∆Ω∈=Ω∆ xx  be a cell with center at ∆Ω∈x . The aver-

aging operator for an arbitrary integrable function f is defined by: 
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It can be shown that for periodic function f of x, its averaged value (2) is constant. 
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The first of the basic assumptions is the micro-macro decomposition of the unknown 
functions: 

• for the transverse deflection: 

 ,,,1),,()(),(),( NAtxVxhtxWtxw AA
K=+=   (3) 

• and for the axial displacement x: 

 ,,,1),,()(),(),(0 MKtxTxgtxUtxu KK
K=+=   (4) 

where the functions ),()(),( 2 ∆Ω∈⋅⋅ d
A SVVW , ),(),( 1 ∆Π∈⋅ d

K SVTU  are new basic un-

knowns, being slowly-varying functions in x; the fluctuation shape functions 

),()( 2 ∆Ω∈⋅ d
A FSh , ),()( 1 ∆Ω∈⋅ d

K FSg  are postulated a priori in every problem under 

consideration. The new basic kinematic unknowns W(⋅) and U(⋅) are called the macrode-
flection and the in-plane macrodisplacements, respectively; VA(⋅) and TK(⋅) are additional 
kinematic unknowns, called the fluctuation amplitudes. 

4. The governing equations of proposed models 

4.1. The governing equations of the tolerance model 

After substitution the micro-macro decompositions (3) and (4) into equations (1), 
the next step of modelling is averaging (2) over an arbitrary periodicity cell. In case of 
symmetric or antisymmetric cell, some of the averaged coefficients yield zero automati-
cally. 

After some manipulations we arrive at the following system of equations: 
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It is a system of 2+N+M differential equations for the macrodisplacements U(⋅), W(⋅) 
and for the fluctuation amplitudes of the deflection VA(⋅) and of the axial displacement 
TK(⋅). The coefficients of these equations are constant, some of them (the underlined 
ones) depend on the size l of the periodicity cell. Hence, the tolerance model describes 
the effect of the microstructure size on vibrations of the beams under consideration. For 
instance, free vibration frequencies of higher order vibrations can be analysed, which are 
related to the microstructure of these beams. 

4.2. The governing equations of the simplified tolerance model 

In order to formulate a simplified model it can be assumed that the deflection fluctuation 
impact on the relative elongation of the beam middle axis is negligible. Therefore, 
the nonlinear components of the strain that involve the fluctuation amplitudes can be 
omitted. 

Introducing the following denotations: 
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governing equations of the simplified tolerance model take the form: 
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 (7) 

Because the matrix BKL in equation (7)4 is nonsingular there exists a matrix (BKL)-1 
and this equation can be written as: 
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Introducing the effective tensile stiffness of the beam: 
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0
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denoting: 
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and after substituting the right-hand side of (8) into (7)1 we have, instead of (7), the fol-
lowing equations: 
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Equations (11) stand the system of differential-algebraic equations. Similarly to 
equations (7) the above equations have the terms dependent of the microstructure param-
eter l. Hence, the simplified tolerance model makes it possible also to investigate 
the effect of the microstructure size on vibrations of these beams. 

4.3. The governing equations of the asymptotic model 

Neglecting in equations (7) or (11) the terms with the microstructure parameter l and 
introducing the effective stiffness of bending of beam: 
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we arrive at the equations in the form: 
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The above equations do not describe the effect of the microstructure size on the be-
haviour of the periodic beams under consideration. Hence, the asymptotic model makes 
it possible to analyse vibrations on the macrolevel only. 

5. Remarks  

In this contribution the mathematical model, called the tolerance model, is shown, which 
describes dynamics of a periodically nonhomogeneous beam. The governing equations 
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of this model are obtained by using the tolerance method, cf. [9, 8, 7]. Hence, the fun-
damental equations with highly oscillating, periodic, noncontinuous functional coeffi-
cients are replaced by the equations with constant coefficients. 

The following general remarks can be formulated. 
1. It can be observed that only the tolerance model and the simplified tolerance mod-

el make it possible to investigate the effect of the microstructure size on dynamic 
problems of periodic beams under consideration, e.g. the “higher order” vibrations 
related to the beam microstructure. 

2. The governing equations of both the tolerance models have a physical sense for 
unknowns W, U, VA, A=1,...,N, TK, K=1,...,M, being slowly-varying functions.  

3. The asymptotic model of periodic beams makes it possible to investigate only low-
er order (fundamental) vibrations. 
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