PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Joint Optimization of Sum and Difference Patterns with a Common Weight Vector Using the Genetic Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A monopulse searching and tracking radar antenna array with a large number of radiating elements requires a simple and efficient design of the feeding network. In this paper, an effective and versatile method for jointly optimizing the sum and difference patterns using the genetic algorithm is proposed. Moreover, the array feeding network is simplified by attaching a single common weight to each of its elements. The optimal sum pattern with the desired constraints is first generated by independently optimizing amplitude weights of the array elements. The suboptimal difference pattern is then obtained by introducing a phase displacement π to half of the array elements under the condition of sharing some sided elements weights of the sum mode. The sharing percentage is controlled by the designer, such that the best performance can be met. The remaining uncommon weights of the difference mode represent the number of degrees of freedom which create a compromise difference pattern. Simulation results demonstrate the effectiveness of the proposed method in generating the optimal sum and suboptimal difference patterns characterized by independently, partially, and even fully common weight vectors.
Rocznik
Tom
Strony
67--73
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Ninevah University, Mosul, Iraq
  • Mosul University, Mosul, Iraq
Bibliografia
  • [1] M. I. Skolnik, “Radar Handbook”, McGraw-Hill, 2008 (ISBN:9780071485470).
  • [2] J. R. Mohammed and K. H. Sayidmarie, “Sidelobe Cancellation for Uniformly Excited Planar Array Antennas by Controlling the Side Elements”, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 987–990, 2014 (DOI: 10.1109/LAWP.2014.2325025).
  • [3] A. Safaai-Jazi and W. L. Stutzman, “A New Low-Sidelobe Pattern Synthesis Technique for Equally Spaced Linear Arrays”, IEEE Trans. On Antennas & Propagation, vol. 64, no. 4, pp. 1317–1324, 2016 (DOI: 10.1109/TAP.2016.2526084).
  • [4] J. R. Mohammed and K. H. Sayidmarie, “Synthesizing Asymmetric Sidelobe Pattern with Steered Nulling in Non-uniformly Excited Linear Arrays by Controlling Edge Elements”, International Journal of Antennas and Propagation, vol. 2017, 2017 (DOI:10.1155/2017/9293031).
  • [5] J. R. Mohammed, “Obtaining Wide Steered Nulls in Linear Array Patterns by Controlling the Locations of Two Edge Elements”, AEU International Journal of Electronics and Communications, vol. 101, pp. 145–151, 2019 (DOI: 10.1016/j.aeue.2019.02.004).
  • [6] S. Koziel and A. Pietrenko-Dąbrowska, “Accelerated Gradient–Based Optimization of Antenna Structures Using Multifidelity Simulations and Convergence-Based Model Management Scheme”, IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8778–8789, 2021 (DOI: 10.1109/TAP.2021.3083742).
  • [7] S. Koziel and A. Pietrenko-Dąbrowska, “Reliable EM–Driven Size Reduction of Antenna Structures by Means of Adaptive Penalty Factors”, IEEE Transactions on Antennas and Propagation, vol. 70, no. 2, pp. 1389–1401, 2022 (DOI: 10.1109/TAP.2021.3111285).
  • [8] K. H. Sayidmarie and J. R. Mohammed, “Performance of a Wide Angle and Wideband Nulling Method for Phased Arrays”, Progress in Electromagnetics Research M, vol. 33, pp. 239–249, 2013 (DOI:10.2528/PIERM13100603).
  • [9] J. R. Mohammed and K. H. Sayidmarie, “Performance Evaluation of the Adaptive Sidelobe Canceller with Various Auxiliary Configurations”, AEU International Journal of Electronics and Communications, vol. 80, pp. 179–185, 2017 (DOI:10.1016/j.aeue.2017.06.039).
  • [10] S. Koziel and A. Pietrenko-Dąbrowska, “Expedited Acquisition of Database Designs for Reduced–Cost Performance–Driven Modeling and Rapid Dimension Scaling of Antenna Structures”, IEEE Transactions on Antennas and Propagation, vol. 69, no. 8, pp. 4975–4987, 2021 (DOI: 10.1109/TAP.2021.3074632).
  • [11] S. Koziel and A. Pietrenko-Dąbrowska, “Robust Parameter Tuning of Antenna Structures by Means of Design Specification Adaptation”, IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8790–8798, 2021 (DOI:10.1109/TAP.2021.3083792).
  • [12] R. Haupt, “Simultaneous nulling in the sum and difference patterns of a monopulse antenna”, IEEE Transactions on Antennas and Propagation, vol. 32, no. 5, pp. 486–493, 1984 (DOI:10.1109/TAP.1984.1143352).
  • [13] T. A. Milligan, “Bayliss line-source distribution”, Modern Antenna Design, vol. 7, Section 4, pp. 158–161, 2005 (http://www.radioastronomy.org/library/Antenna-design.pdf).
  • [14] J. R. Mohammed, “Optimal Null Steering Method in Uniformly Excited Equally Spaced Linear Array by Optimizing Two Edge Elements”, Electronics Letters, vol. 53, no. 13, pp. 835–837, 2017 (DOI:10.1049/el.2017.1405).
  • [15] M. Alvarez-Folgueiras, J. Rodriguez-Gonzales, and F. Ares-Pena, “Synthesizing Taylor and Bayliss linear distributions with common aperture tail”, Electron. Lett., vol. 45, no. 11, pp. 18–19, 2009 (DOI:10.1049/el:20093322).
  • [16] M. Alvarez-Folgueiras, J. Rodriguez-Gonzales, and F. Ares-Pena, “Optimal compromise among sum and difference patterns inmonopulse antennas: use of subarrays and distributions with common aperture tail”, Journal of Electromagnetic Waves and Applications, vol. 23, no. 17–18, pp. 2301–2311, 2009 (DOI:10.1163/156939309790416206).
  • [17] A. F. Morabito and P. Rocca, “Optimal synthesis of sum and difference patterns with arbitrary sidelobes subject to common excitations constraints”, IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 623–626, 2010 (DOI:10.1109/LAWP.2010.2053832).
  • [18] A. F. Morabito and P. Rocca, “Reducing the number of elements in phase–only reconfigurable arrays generating sum and difference patterns”, IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1338–1341, 2015 (DOI: 10.1109/LAWP.2015.2404939).
  • [19] S. Kwak, J. Chun, D. Park, Y. K. Ko, and B. L. Cho, “Asymmetric Sum and Difference Beam Pattern Synthesis with a Common Weight Vector”, IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1622–1625, 2016 (DOI: 10.1109/LAWP.2016.2519530).
  • [20] D. W. Boeringer and D. H. Werner, “Particle Swarm Optimization versus Genetic Algorithms for Phased Array Synthesis”. IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 771–779, 2004 (DOI: 10.1109/TAP.2004.825102).
  • [21] W. P. M. N. Keizer, “Fast low sidelobe synthesis for large plan ar array antennas utilizing successive fast Fourier transforms of the array factor”, IEEE Trans. Antennas Propag, vol. 55, no. 3, pp. 715–722, 2007 (DOI: 10.1109/TAP.2007.891511).
  • [22] J. R. Mohammed, “Synthesizing Sum and Difference Patterns with Low Complexity Feeding Network By Sharing Element Excitations”, International Journal of Antennas and Propagation, vol. 2017, Article ID 2563901, 2017 (https://downloads.hindawi.com/journals/ijap/2017/2563901.pdf).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99112057-a54d-405f-ae01-294ff1e85eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.