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Abstract

The focus of this research work was predicting the fatigue life of mechanical
components used for industrial and transport systems. To understand how the phenomenon
of fatigue occurs in a material, the fatigue crack growth is studied. The purpose of this
work was to create a graphical user interface (GUI) under Matlab to allow researchers
to conduct the parametric studies of fatigue crack propagation to predict fatigue life.
In this work, three models for fatigue crack propagation were used: those of Paris,
Walker and Forman in order to study the three parameters: the Paris exponent m, load
ratio R and hardness K, respectively. In addition, a novel model FCG was developed
to study the influence of the hardening parameters (K', n") on fatigue crack propagation.
The comparison of the simulation results with those in the literature shows good
agreement.

Keywords: Fatigue life prediction; Graphical User Interface, fatigue crack growth;
cyclic hardening; Paris; Walker; Forman
Article Category: Research Article

INTRODUCTION

Fatigue is likely to cause the destruction of structural a component over number
of cycles. Fatigue begins with a local plastic deformation without plasticization of
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the whole structure, occurring first around the defect and then at the end of the crack
once it has formed (and propagated). The initial crack and fatigue crack growth represent
a major part of the fatigue life of a material. By applying the principles of fracture
mechanics, it is possible to predict the number of cycles causing a crack of a certain
length to failure. The velocity of fatigue crack growth varies linearly with the stress
intensity factor range (AK) on bi-logarithmic scale. The crack most often propagates
on a plane perpendicular to the direction of the load applied. This regime is characterized
by the gradual acceleration of the crack propagation when the stress intensity factor
(AK) increases. (Paris-Erdogan 1963) linked the velocity of fatigue crack propagation
with the amplitude of the stress intensity factor (AK) by a power type relation known
as the Paris law (Table 1). Furthermore, there are several models predicting the fatigue
crack propagation which express the fatigue life along the crack length; these models
are initially based on one of the three approaches presented to quantify the damage
at the crack tip. Moreover, the models based on the accumulation of the damage are
the least used since it is difficult to quantify the damage necessary for the crack
propagation [1], [2]. Models excluding closure are frequently used in the literature because
of their simplicity and their good comparison with experimental results. The FCG models
developed by different authors can be classified according to their materials parameters
and role as presented in Table 1. Fatigue resistance of a material depends on number
of parameters such as the material’s chemical composition, mechanical properties, heat
treatment conditions, loads and the environment. The explanation of this phenomenon
has been the subject of several works for different materials taking into account
the influence of several intrinsic and extrinsic factors such as the load ratio [3], [4],
geometry of specimen [3], thickness [5], cyclic plastic hardening [2], cyclic plastic
deformation [6], [7], ageing of materials [8], temperature [9]. The influence of
the variability of these parameters on the velocity of fatigue crack propagation and fatigue
life prediction were studied by several authors [2], [6], [10], [11].

Table 1. Different models for FCG with their materials parameters.

Materials C [m/cycle] m AK,;, [MPa.m'?] R Refs
2.10E-13 423 6.57 0.1
S$355NL 8.10E-14 4.62 6.43 0.3 [12]
2.10E-13 4.16 5.42 0.5
0.40 E-13 5.39 3.20 0
_ 0.40E-13 5.71 2.85 0.12
Paris model S16L 1.60E-13 5.73 225 0217 | [13]
j—;:C(AK)m 2.19E-13 5.77 2.10 0.334
3.88 E-13 5.70 2.02 0.44
1.987E-11 2.095 0
- 42E-11 4315 1.768 0.176 )
433 E-11 1.749 0.264
479 E-11 1.709 0334




5.03 E-11 1.690 0.39
5.63 E-11 1.646 0.44
5.583E-12 2.7 9.5 0
1.796E-11 2.7 8.6 0
[14]
1.359E-11 2.8 8.4 0
1.327E-11 2.8 8.35 0
8.05E-8 2.00 0.05
Nickel 4.02E-8 225 0.1
Chrome [4], [15]
1INC6 5.43E-9 2.97 0.3
2.87E-9 3.20 0.5
4.9423E-11 2.6526 1.999 -1
2024 T3 2.238E-10 1.146 0 [16]
2.6029E-10 1.0839 0.1
7.2965E-10 2.3398 0.5202 0 161
1.6170E-11 1.0034 -1
8.65E-11 3.49 0.1
437E-11 321 0
[17]
1,47E-11 3.40 -0.33
3.89E-12 3.49 -0.60
7075-T6
9.83E-11 3.64 0.0
4.72E-12 4.13 0.2
2.86E-10 3.59 0.33
[18]
3.40E-10 3.64 0.5
3.55E-11 4.14 0.67
3.86E-12 4.68 0.8
1.2E-10 3.40 0.40
8.9E-10 3.45 0.25
6082-T6 [19]
5.1E-10 3.54 0.50
1.9E-10 3.98 -0.25
7,3017E-11 2.3779 1.4687 -1
Ti-6Al-4V | 1,6580E-10 1.0434 0.1 [16]
2,2273E-10 0.9215 0.5
Co [m/cycle] m AK, [MPam'?] y R
Walker model 2.75 3.998 0.0
2.59 3.389 0.1
da_  C (xk)" [20]
dN (1= R)mu—y) 2019-T851 2.25 3.494 0.3
1.86 3.937 0.5
1.40 3.590 0.7




1.12 2.429 0.8
0.158E-8 3.301 0.164 -1
2024-T3 [21]
0.167E-8 3.273 0.618 0.5
7075-T6 2.66E-11 3.84 0.564 0.2 [18]
C m AK, [MPam'?] | K,.[MPam'?] B
th Ic [mm]
1.10E-3 0.71 6.2 29.4 1.6
0.84E-3 0.96 53 29.2 3.2
Forman model 1.07E-3 0.85 6.0 29.5 48 (5]
m _
da _ C(AK) 2024-13 1.09E-3 0.36 6.7 212 9.8
v (1-R)(K/c ~AK) 4.05E-3 0.74 53 235 1.0
0.52E-3 0.76 5.6 26.3 3.0
and 0.25E-3 1.32 43 32.1 5.0
Forman modified model 0.71E-3 1.03 6.2 323 125
m
da _ C(AK-AKy) C m AK, [MPam'?] | K,.[MPam'] R
dN  (1-R)(K;c —AK)
1.0E-5 3.24 50.12 0.1
7020-T7 2.0E-5 3.17 [22]
1.0E-5 3.16
1.33E-5 3.19
C m AKth [MPa.m'?] U R
2.75 0.7037 0
Elber model
2. . 1
da 2019-T851 > 0.7577 0 [20]
— =C(UAK)" 2.25 0.8639 0.3
dN
1.86 0.9124 0.5
1.40 0.8662 0.7
AISI 316N 3.00E-9 4 6.00 0.45 [23]
S355NL 6.10E-12 3.40 425 0.1 [12]
C m AK, [MPam'?] | K, [MPam”? | ¢
Priddle model impos
ﬁzc[(AKAKm)(lR)]m T4 3.587E-06 1.558 1.31 95.5 0% [24]
av | ((1-R)Kic —AK) 17381 8.754E-06 1.750 1.45 92.8 3%
5647E-06 1.665 1.37 79.3 5%
A m n K, [MPam'?] R
Wang model
6.0068E-10 2.60 6.00 48.35 -1
da AM™
—— 2.9948E-10 2.70 6.00 57.03 0.1
dN K, AA 6013 [25]
i 1.8894E-10 2.66 6.00 62.45 0.3
Ic
1.5274E-10 2.61 6.00 61.67 0.5
9.3434E-10 2.52 6.42 65.00 0.7




Dowling-Begley model C m E [GPa] A, R
da C ml2 [26]
TR, Logeillloy 143E-11 275 206 0.2
4 o, [MPa] U, [Jm?] 41 [MPa]
4.50E-11 370 2.40E+5 2.60E+4
2219-T861 |  7.50E-10 370 1.60E+5 2.60E+4
Weertman model
2.04E-10 260 2.10E+5 2.60E+4 [27]
L2 (ak)’
N uolU 9.00E-12 340 6.00E+5 7.80E-+4 (28]
Steel Nb- 2.40E-11 340 1.20E+6 7.80E+4
HSLA 5.10E-11 340 8.00E+5 7.80E+4
1.11E-10 340 1.20E+6 7.80E+4
Pugno model C m C [MPa] k R
o (N ) [29]
N CCr" (m/2-1) Steel 1045 8.20E-13 3.5 1.32E+36 11.11 0
E [GPa] o, [MPa] £y Ko [MPam?] | R [21]
[30]
70.3 835 0.17 30.0 0.5 31]
2024-T3 73.0 1103 0.58 34.1 [32]
Duggan model 72.0 850 0.22 36.26 [33]
T We',) [34]
ﬁ_L|‘U"/E(KICKmax) .M(z/g'f) 72.2 776 2.57 22.28 [35]
dN &'
-] 7075-T6 71.1 729.62 0.26 33.48 [36]
71.0 781 0.19 37.04 [37]
64.0 611 1.08 33.1 [38]
6082-T6 70 487 0.209 34.0 E‘z}
73.9 4772 0.696 21.1 [41]
E |6 Mpa| & n' 4 I, y
[GPa] ! ! "
Pandey model
0.941
da  (1-n")y 2219-T851 | 71 035 | 0.121 | 0.71 3.02 S
dN O E [42]
4E1, osEs 0.947
) Steel 8630 | 207 1986 042 | 0.195 | 0.71 3.082
(AK -AK,,(1-R) ) 9
0.948
Steel 4340 | 209 1713 0.83 | 0.146 | 0.71 3.184 |
C P y
Noroogi model 5.43E-13 0.5 10
LT 2024-T351 8.72E-12 0.09 10
da _ | (Knax) [43]
N (aK)7 9.13E-10 0.09 2.67
5.25E-15 0.5 11.64
Steel 4340
1.83E-13 0.11 11.64




4.25E-11 0.11 2.77
4.67E-16 0.5 9.62
Ti-6Al-4V 1.88E-13 0.960 9.62
1.00E-10 0.960 2.53
E [GPa] o, n' £ AK,, R
[MPa.m!?]
Shi model 7075-T6 71 781 0.088 0.19 1.98 0.5
da  (1-n') 2| 2024-T351 70 738 0.100 0.3 2.68 0.0
I ae e (MK AK) [37]
4Eyo & ; 2219-T851 71 613 0.121 0.35 2.7 0.1
avec; y =(1+n")z Steel 4340 200 1879 0.123 0.64 4.56 0.7
Steel 1020 205 815 0.18 0.25 11.6 0.1
X60 200 720 0.132 0.31 8.0 0.1
E o
3 n e £ % | AK, [MPam?] | R
[GPa] MPa] | i [44]
70 0.32 0.1 403 19 2.68 0.3 [45]
724 352 18 2.1 -1 [46]
2024-T351 [47]
74 | 033 0.09 363 12.5 2.4 0.2 8]
73.0 0.065 379 28 2.1 0.3
Radon model [49]
72.2 0.096 512 2.3 0.1
da_2(1-20)" (ARG ~0K) 71 | 032 | 0088 | 46885 1.98 0.5 [5106][358]
dN  Ax(l+n') J;'”'(E.sf)lw 7075-T6 . : : : : [50][38]
70.6 0.062 533 41 1.23 0.7 | [51][42]
71 0.19 469 41 1.0034 -1 {‘5‘2
209 | 033 0.146 724 14.5 2.6509 -1
[37]
200 0.14 758 84 5.6 0.1 53]
Steel 4043
207 0.131 1103 56 3.66 0.5 [54]
200 | 03 0.123 889.32 4.56 0.7
E o
L n e Ef % | I,=rn(+n)/(1-20)
[GPa] [MPa] [55]
200 | 033 0.123 1039 14.5 [42]
Steel 4340
Musuva model 209 | 033 0.146 724 13.0 [37]
S04l 196 0.33 0.111 220 84 [54]
n'+l _
da _ 2™ My —A; 193 | 033 | 0341 238 83 — [51]
dN n' n'+1 1 alculate 45
AT 1 (gr) (o) 71 | 032 | 0088 469 4]
7075-T6 [56]
70.6 | 0.32 0.062 540 41
2024-T351 | 70 | 0.32 0.1 403.46 19
2024T3 | 73.1 | 033 0.042 445 20




All these models cannot be applied in a general way; each of them describes a given
situation and becomes unsuitable as soon as a parameter of the experience varies and
affecting the fatigue life prediction. However, to find a good results from a model, it is
necessary to consider the influence of the intrinsic (Young’s modulus, grain size, elastic
limit, toughness, etc.) and extrinsic (dimensions of the specimen, and environmental
effects, etc.) on the velocity of fatigue crack propagation.

This work aims to develop a Graphical User Interface (GUI) under Matlab which
would allow the parametric studies on fatigue life prediction and fatigue crack
propagation using different phenomenological models such as those of Paris, Walker
and Forman. Also, the novel model proposed by the authors to take into account
the influence of hardening parameters.

MODEL PROPOSED

No model for fatigue crack growth described in literature (Table 1) [57], [58] can
be applied in a general way but as these models explicate a given situation and become
unsuitable as soon as there is any variability of experimental parameters. Therefore,
in order to derive reliable results from a model, it is necessary to take into account
the influence of both different extrinsic parameters (geometrical and loading) and
intrinsic parameters (material properties) on the fatigue crack growth. Then, the choice
of model will depend on the effect of certain parameters and stages of cracking.
For example, the Forman model considers the influence of the toughness (or hardness
K ) of materials and the last two stages of cracking.

The authors have developed a new model for fatigue crack propagation as a function
of hardening parameters (K', n") detailed below:

The relation of Ramberg-Osgood describes the cyclic plastic strain as a function
of nominal stress (o) with cyclic parameters (K', n'):

Agp ~ Ao /n'

The applied nominal stress amplitude is determined as:

AK

— @)

By substitution, the Ramberg-Osgood relationship is obtained that expresses plastic
strain as a function of the stress intensity factor:

Agp _( AK jl/n
2 \2Kr-a )

Ao =

Also:

AK = 2K a (A‘g” ] . @)

2



Based on this relation and the Paris model, we have developed a model that expresses
the fatigue crack propagation velocity as a function also of cyclic hardening parameters,

defined as follows:

2

Ae Y
ﬂ:C 2K'\Nm-a £
dN

By integrating equation (1), the number of cycles is given by:

N =[" ! da

ae YV
C 2.K'\/7r~a( SPJ

2
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Figure 1. Methodology of Graphical User Interface (GUI).
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A Graphical User Interface (GUI) under Matlab for predicting fatigue life was
developed. The influence of different extrinsic (geometric and loading) and intrinsic
(material properties) parameters on the fatigue life was taken into account. The fatigue
crack growth models used were those developed by Paris, Elber, Walker, Forman and
model proposed here. Matlab (Matrix Laboratory) software is an interactive digital
computing system that has a large number of functions, a programming language and
graphical visualization tools.

A Graphical User Interface under Matlab is a set of graphical elements allowing
users to interact with parts of programs by displaying information (texts, graphics,
images, curves, etc.) and by triggering actions following events; mouse click, mouse
movement, keyboard input, etc.

An example of a user interface is a window linked to a figure and the objects it can
contain (menus, buttons, axes). To develop the Graphical User Interface, we have
developed an organization chart in which we have the operating principles and the
different stages of the creation of this interface (Figure 1).

Creation steps

Building the Graphical User Interface was accomplished by several stages consisting
in programming the script with file type (file.m) programmed in Matlab and grouped
in the same folder. The detail of each step is given by the below:

1. Preface is a window which displays the home page for a duration of ten seconds.

It carries personal information of the creator of the interface (Name, Title, University,

Year, etc.) (Figure 2).

Figure 2. Screen capture of home page.



2. Graphical interface: if you run the preface program in Matlab, first the home page
is fully lit then goes out after 10 seconds, after the interface window will start
automatically and display a window where different cracking models (Paris, Walker,
Forman, Elber and Model proposed) appear as shown in Figure 3.

Model of Walker
Model of Forman
Model of Elber  »
Model proposed

7 = BNl B
Figure 3. Screen capture of graphical user interface.

3. FCG Models: The fatigue life estimate is obtained from the models for crack
propagation presented in Table 2. For each model there is a script file programmed
and developed under Matlab. The choice of model will depend on the effect of certain
parameters and the stages of cracking. For example, the use of the Forman model
allows taking into account the toughness of the material and the last two stages of
cracking.

4. Choice of specimen: The stress intensity factor depends both on the specimen
relative to its geometric design, and loading, and on the crack relative to its size (a).
It is expressed in MPa.m"2.

In this study, we used two types of specimen C(T) and M(T) [2], see Figure 4.
The expressions of the amplitude of the stress intensity factor are presented by
the relations (7) and (8) respectively.

Ak =B [T e ™ ith a=(Qa/w)  For M(T) (7)
B \2w 2

AK = %\/ﬁ fla)  witha'=(a/w) For C(T) ®)



flah)= %[0.886+4.64(a N-13.32(a ')’ +14.72(a ")’ - 5.6( ')4} 9)
I-o'
Where: B and w are the width and thickness of the specimen, respectively;

the amplitude of the mechanical loading is given by AP = (P .« = Prin)-
These two equations are thus programmed under Matlab script (file.m) and integrated

into the files of the cracking models.

1.25w

75w
—pi
1
1
i \
[~ |
2.00 w

-,:
P —t
= -+
s =
. a
= S
™
i
I
|- > o W
a) i W B b) " B

Figure 4. Design of specimen, a) C(T), b) M(T).

5. Input parameters: This step follows the previous steps and will depend on
the execution of the previous programs. The correct execution (or run) of these
programs (choice of model, choice of specimen) results in the display of a window
with the chosen model, the geometric parameters (B and w), the loadings (Frequency
J, maximum load P ,, and minimum P, ;) and the command buttons (Spectrum,
Life, Speed, Return, etc.). All of these steps are given in Figure 5. The input values
are obtained using the experimental results [3].

6. Output: When the values of these parameters are entered (Input), the command
buttons (Spectrum, Life, Speed, Calculate) will allow the user to view the results
in the form of curves or values, also we can export the following results data from
excel file:

* Life prediction curve,

* Fatigue crack growth curve,

* Value of the final cycle and the amplitude of the stress intensity factor with speed
of cracking at a given crack size, see Figure 5.
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Figure 5. Screen capture of input parameters, case of Paris’s Model.
APPLICATION

The creation of this Graphical User Interface allowed us to make parametric studies
on fatigue crack propagation, using different phenomenological models such as those
of Paris, Walker, Forman and the model proposed here, see Table 2. Also, fatigue life
estimation is obtained from the models for fatigue crack propagation presented in
Table 2. For this purpose, we carried out four applications that are classified according
to the four cracking models used. The development of the integral under Matlab makes
it possible to calculate fatigue lifetime Ny

Table 2. Models for fatigue crack growth.

Models Fatigue life prediction
. da m ar 1
. —=C(AK N, = d
Paris: v (AK) f _[ KT a
da C m mo(1-7)
Walker: —=——29%__(AK)™ _ = (1-R)
dN (I_R)mo(l—;/) ( ) Nf = J.aX —C(AK)”‘O da
da _ C'(AK)" da A, Y'Y
Forman: dN—(l_R)(Kmax_ch) d_n=C 2.K\/7r-a[ 2”}
Model proposed: a
p p o N/ = .L.f ! o da
7 i A 1
;’_“z C{Z.K'\/n. a[%] } C[Z.K'\/n- a( , )
n




Application 1, using the Paris model

In this application, the influence of the Paris exponent m is studied with the use
of two different aluminum alloys 2024-T3 and 7075-T6 whose different parameters of
the Paris law are given in Table 3. These parameters were obtained from experimental
results obtained by Forth et al. [3] under boundary conditions of specimen M(T) and
applied loading (P, and P,;,) given in Table 4.

Table 3. The Paris’ law parameters.

Alloys |C [mm/cycle] m Ref.
2024-T3 2.89E-9 3.037 ;3]
7075-T6 1.31E-9 2.902

Table 4. Boundary conditions.

Alloys | W [mm] | B[mm] | Pmax [N] | Pmin [N] R Ref.
2024-T3 | 100.35 9.53 5704 570.4 0.1
3
7075-T6 | 102.03 3.18 1902 190.2 0.1 B)

40 4

1 ——Sim. 2024
35 —&— Exp. 2024
——Sim. 7075
—&— Exp. 7075

304

N
o
1 1

Crack length a [mm]
3
1

T T T T T T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000
Number of cycles [N]

Figure 6. Crack length as a function of number of cycles
with experimental results [3].

The results expressed in fatigue life prediction of alloys 2024 and 7075 show a good
agreement with the experimental study carried out by Forth et al. [3] and are presented
in Figure 6. Figure 6 shows the evolution of crack length (@) as a function of number
of cycles (N). It can be seen that under these boundary conditions of specimen and
loading applied, the lifetime for alloy 7075 is 350.000 cycles, while that for alloy 2024
is 250.000 cycles. It is shorter life with a shift of 100000 cycles. Indeed, the exponent
m which represents the slope of the cracking curve is much larger for 2024 alloy



(m = 3.037) hence a much higher crack propagation rate for the same length (a) or
the same (K). This is illustrated by Figure 7, which shows the evolution of fatigue crack
propagation (da/dN) as a function of the stress intensity factor (K). It can be concluded
that the effect of the exponent on the cracking curves is very significant. When the Paris
exponent (m) increases, the crack propagation curve shifts to the left and the speed
(da/dN) of fatigue crack growth increases.

1E-4 -
E —&— Sim. 7075

—— Sim. 2024

1E-5

1E-6 -

da/dN [m/cycle]

1E-7 4

1/2.

AK [MPa.m™]

Figure 7. Fatigue crack growth rate
versus stress intensity factor K.

Application 2, using the Walker model

In the second application, we were interested in the influence of the load ratio R
using the Walker model. In this work, the material studied was Aluminum alloy 2024,
whose properties are presented in Table 5. The boundary conditions of specimen (CT)
and loading are given in Table 6.

Table 5. The Walker’s law parameters.
Alloy Co [mm/cycle] myy y Ref.
2024-T3 2.66E-8 3.9 0.564 [18], [59]

Table 6. Boundary conditions of 2024-T3.

Alloy B [mm] W [mm] | Ppax [N] | Pmin [N] R
2024-T3 75 6 5000 500 0.1
5000 1500 0.3

5000 2500 0.5

Figure 8 shows the evolution of fatigue crack length as a function of number of cycles
relative to the variability of load ratio R. It can be observed that the increase in load
ratio R results in a decrease in fatigue lifetime.
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Figure 8. Evolution of fatigue crack length as a function
of number of cycles for 2024.

Figure 9 shows the fatigue crack propagation rate as a function of stress intensity
factor (K). The influence of load ratio R is well noticed for the fatigue crack growth,
an increase in load ratio R causes a decrease in the fatigue lifetime prediction [45], [60].

1E-6

R=0.1
] —eR=03
1E7 o —4A—R=05

1E-8 -

1E-0 4

1E-10 4 /'

da/dN [m/cycle]

AK [MPa.m']

Figure 9. Fatigue crack growth rate
versus stress intensity factor K for 2024.

Application 3, using the Forman model

In this application, the influence of the hardness (or toughness K;) of a material
is highlighted. Forman’s model is expressed as a function of toughness (K;), and
takes into account the domain three for fatigue crack growth, when the amplitude of
the intensity factor tends towards the amplitude of the critical stress intensity factor
represented by the hardness (or toughness K ;) of material.

The material used was alloy 2024-T3 whose properties are presented in Table 7.
The boundary conditions of the test specimen and loading applied are given in Table 8.



Table 7. The Forman law parameters.
Alloy C’ [mm/cycle] m’ Kjc [MPa.m'?] Ref.
2024-T3 6.30E-1 02.65 35 [5]

Table 8. Boundary conditions of 2024-T3.
Alloy B[mm] | W[mm] | Ppax [N] | Pmin [N] R
2024-T3 75 6 5704 570.4 0.1

The results obtained from the experimental tests described in the literature give
different values with errors [5], [35]. Hence we proposed variability on the values obtained
from the hardness (32, 35 and 38 MPa.mm'?). Given these results, the calculations
obtained by Graphical User Interface (GUI) under Matlab software were performed by
varying toughness (K ).

Figure 10 shows the evolution of the fatigue crack length as a function of number
of cycles under the influence of variability of toughness (K ;). Despite small difference
in the toughness values, the latter has a great impact on the fatigue crack growth of
the material. Indeed, the fatigue lifetime prediction is all the more important when
toughness increases. This is to say that a material with high toughness is more resistant
to fatigue crack propagation [5], [35].
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Figure 10. Evolution of fatigue crack length

versus number of cycles for 2024.

Figure 11 shows the evolution of the fatigue crack growth rate (da/dN) as a function
of the stress intensity factor (K) for different values of K;-. The fatigue crack
propagation curve shifts to the right as toughness increases meaning a slower speed of
fatigue crack growth and a better fatigue life prediction.
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Figure 11. Fatigue crack growth rate
versus of stress intensity factor K.

Application 4, using the proposed model

The model proposed presents fatigue crack growth as a function of cyclic hardening
parameters (K’ and n'). It allowed us to do the parametric studies of fatigue life
prediction and fatigue crack growth as affected by cyclic hardening parameters, using
the Graphical Interface, see Figure 12.

Figure 12. Screen capture of input parameters, case of model proposed.

For this application, we used 2024-T3 Aluminum Alloy with properties of cyclic
hardening (K', n") and parameters of Paris (C, m) as shown in Table 9. Table 10 presents
the boundary conditions for the test specimen and the loading applied. The variability



of parameters cyclic hardening proposed when all the values of material properties
obtained by experimental tests are not exact values, these are lacking reliability, needs
us to studies their effect on fatigue life prediction using the manipulator of our Graphical
Interface (Figure 3).

Table 9. The parameters of Model proposed.

Alloy |C'[mm/cycle] m' K'[MPa] n' Ref.
420 0.072

2024-T3 | 6.30E-10 2.65 400 0.082 [2]
440 0.092

Table 10. Boundary conditions of 2024-T3.
Alloy | B[mm] | W[mm] | émax[%] | &min [*] R
2024-T3 75 9.53 0.80 0.1 0.1

Figure 13 presents the evolution of crack length versus the number of cycles have
the same trend comparatively for three variability of the hardening exponent (n"), are
shown also that the decrease in cyclic hardening exponent (n'), decreases the fatigue
life prediction for 2024 T3 Al-alloy. This decrease in fatigue life is due to reduced
fatigue resistance and the size of the plastic zone. The curve initially starts as a straight
line with a small slope. This is the elastic region. In this region, the plastic strain is
absent and crack length (a) slightly increases with the number of cycles N. As plastic
strains evolve with increasing stress (larger crack length) beyond the yield point at some
point on the crack front, the graphs turn upwards. The hardening exponent (n") governs
the magnitude of the plastic strains and, therefore, the change of crack length depending
on the number of cycles [2], [6].
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Figure 13. Crack length versus number of cycles for 2024-T3,
under variability of cyclic hardening (n").



Figure 14 shows the evolution of the crack length versus the number of cycles under
the variability of the cyclic hardening coefticient (K") for 2024-T3 alloy studied. It can
be observed that when the number of cycle increases, the crack length increases too,
irrespective of the value of cyclic hardening (K’), Also, increasing cyclic hardening
(K") leads to decreasing the fatigue life prediction.
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Figure 14. Crack length versus the number of cycles for 2024-T3,
under variability of cyclic hardening (K").
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Figure 15 displays the fatigue crack growth rate as a function of the range of
the stress intensity factor for three different values of cyclic hardening (n"). The effect
to variability it seems clearly suitable thus the velocity to fatigue crack propagation
increases when the cyclic hardening decreases.
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Figure 15. Fatigue crack growth versus the (K) for 2024-T3,
under variability of cyclic hardening (n").

The variability of the cyclic hardening coefficient (K") on the evolution of the fatigue
crack propagation for alloy 2024-T3 is visible in Figure 16. It can be seen that
the fatigue crack propagation increases when the cyclic hardening coefficient increases.
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Figure 16. Fatigue crack growth versus the (K) for 2024-T3,
under variability of cyclic hardening coefficient (K').

CONCLUSION

The objective of this work was to create a Graphical User Interface (GUI) under
Matlab enabling parametric studies of fatigue prediction and fatigue crack growth using
four models of fatigue crack growth (Paris, Walker, Forman and model proposed).
The main factors studied were the exponent m, the load ratio R, the toughness K~
and the cyclic hardening (K, n"). Based on the analysis of the Graphical User Interface
and performed calculations, the following conclusions were reached:

» The fatigue crack propagation curve shifts to the left when the Paris exponent m
increases and leads to decreasing the fatigue lifetime prediction.

» The load ratio R has a great influence on fatigue crack growth; fatigue life decreases
when the load of ratio R increases,

* A material with high toughness is more resistant to fatigue crack propagation.

» The effect to variability it seems clearly suitable thus the velocity to fatigue crack
propagation increases when the cyclic hardening exponent decreases.

» The cyclic hardening exponent decrease, decreasing the fatigue life prediction

* The influence of the cyclic hardening (K") is well marked on the fatigue prediction.

Increasing values of cyclic hardening (K") lead to decreasing fatigue life prediction.

Therefore, fatigue crack propagation increases when the cyclic hardening coefficient

increases.

The Graphical User Interface makes it possible to identify the parameters (material
properties, specimen dimensions and loading applied) that affect fatigue life prediction
and fatigue crack growth, thus enabling performing a reliable parametric study.
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