PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of daily concentrations of air pollutants over four stations of Andhra Pradesh, India, during 2019-2022

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, pollution levels have increased to dangerous levels in several Indian cities. These levels are posing a severe threat to human’s health. Using the data from Central Pollution Control Board (CPCB), the current work focuses on highlighting the primary air pollutants in various regions such as Visakhapatnam (VSK), Hyderabad (HYD), Amaravati (AMV), and Tirupati (TPTY). Data from the Zoo Park area were used to study the location of HYD. Sulphur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), nitrogen oxides (NOX), particulate matter with particles less than 2.5 gm in diameter (PM2.5), particulate matter with particles less than 10 gm in diameter (PM10), and ozone (O3) are the air pollutants used for analysis in this work. An attempt was made to research the meteorological factors that contribute to the rising levels of air pollution between 2019 and 2022. Wind speed (WS), temperature (TEMP), relative humidity (RHUM), rainfall (RF), and solar radiation (SR) are the meteorological variables used in the analysis. The prediction of PM2.5 and PM10 was done using artificial neural network (NN) method. The NN method's outcomes show strong correlation in the forecasting of air pollution across four locations. The VSK station exhibited a high correlation of 91.29%, whereas TPTY station had a low correlation of 82.1%, based on CPCB PM2.5 observation and NN technique. The VSK station revealed a high correlation of 90.30%, whereas TPTY station had a low correlation of 81.61%, based on CPCB PM10 observation and NN technique.
Czasopismo
Rocznik
Strony
1227--1249
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
  • Department of ECE, Dhanekula Institute of Engineering and Technology, Vijayawada 521139, India
  • Department of ECE, Kallam Haranadhareddy Institute of Technology, Chowdavaram 522019, India
  • Department of ECE, Dhanekula Institute of Engineering and Technology, Vijayawada 521139, India
  • Department of ECE, Dhanekula Institute of Engineering and Technology, Vijayawada 521139, India
Bibliografia
  • 1. Agarwal R, Jayaraman G, Anand S, Marimuthu P (2006) Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ Monit Assess 114:489-504
  • 2. Ameer S, Shah MA, Khan A, Song H, Maple C, Islam SU, Asghar MN (2019) Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access 7:128325-128338
  • 3. Arden Pope C, Burnett Richard T, Thurston George D, Thun Michael J, Calle Eugenia E (2004) Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation 109:71-77
  • 4. Atkinson RW, Butland BK, Anderson HR, Maynard RL (2018) Long term concentrations of nitrogen dioxide and mortality: a meta analysis of cohort studies. Epidemiology 29(4):460472
  • 5. Balakrishnan K, Dey S, Gupta T, Dhaliwal RS, Brauer M, Cohen AJ, Stanaway JD, Beig G, Joshi TK, Aggarwal AN, Sabde Y (2019) The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease study 2017. Lancet Planetary Health 3(1):e26-e39
  • 6. Bashir MF, Ma B, Komal B, Bashir MA, Tan D, Bashir M (2020) Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci Total Environ 728:138835
  • 7. Box GE, Jenkins GM (1976) Time series analysis: forecasting and control, 2nd edn. Holden-Day, San Francisco
  • 8. Cui Y, Zhang ZF, Froines J, Zhao J, Wang H, Yu SZ, Detels R (2003) Air pollution and case fatality of SARS in the People’s Republic of China: an ecologic study. Environ Health 2(1):1-5
  • 9. Deters K, Jan RZ, Gonzalez M, Rybarczyk Y (2017) Modeling PM 2.5 urban pollution using machine learning and selected meteorological parameters. J Electr Comput Eng 2017:1-14
  • 10. Dodla VBR, Gubbala CS, Desamsetti S (2017) Atmospheric dispersion of PM2. 5 precursor gases from two major thermal power plants in Andhra Pradesh India. Aerosol Air Quality Res 17(2):381-393
  • 11. Faustini A, Rapp R, Forastiere F (2014) Nitrogen dioxide and mortality: review and meta-analysis of longterm studies. Eur Respir J 44(3):744-753
  • 12. Freeman BS, Taylor G, Gharabaghi B, The J (2018) Forecasting air quality time series using deep learning. J Air Waste Manag Assoc 68(8):866-886
  • 13. Garaga R, Sahu SK, Kota SH (2018) A review of air quality modeling studies in India:local and regional scale. Curr Pollut Rep 4:59-73
  • 14. Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Zhao B (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419-5454
  • 15. Global Carbon Project (2020) Global Carbon Project. https://www. globalcarbonproject.org/carbonbudget/index.htm.
  • 16. Gordon T, Balakrishnan K, Dey S, Rajagopalan S, Thornburg J, Thurston G, Agrawal A, Collman G, Guleria R, Limaye S, Salvi
  • 17. S, Kilaru V, Nadadur S (2018) Air pollution health research priorities for India: perspectives of the Indo-U.S. Commun Res Environ Int 119:100-108
  • 18. Gouda KC, Nikhilasuma P, Kumari R, Singh P, Benke M (2020) Analysing Spatio-Temporal Spread of Covid19 in India. COVID-19 Pandemic: Case Studies Opin 01(04): 57-67.
  • 19. Holzworth GC (1967) Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Mete-orol 6:1039-1044
  • 20. Humbal C, Gautam S (2019) Evaluating the colonization and distribution of fungal and bacterial bioaerosol in Rajkot, western India using multi-proxy approach. Air Qual Atmos Health 12(6):693-704
  • 21. Jihan Li, Li X, Wang K (2019) Atmospheric PM2. 5 concentration prediction based on time series and interactive multiple model approach. Adv Meteorol 2019:1-11
  • 22. Koken PJ, Piver WT, Ye F, Elixhauser A, Olsen LM, Portier CJ (2003) Temperature, air pollution and hospitalization for cardiovascular diseases among elderly people in Denver. Environ Health Perspect 111(10):1312-1317
  • 23. Kota SH, Guo H, Myllyvirta L, Hu J, Sahu SK, Garaga R (2018) Yearlong simulation of gaseous and particulate air pollutants in India. Atmos Environ 180:244-255
  • 24. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrane atmospheric particles:a review of observations. J Aerosol Sci 35:143-176
  • 25. Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T (2018) The Lancet Commission on pollution and health. The Lancet 391(10119):462-512
  • 26. Le Tertre A, Medina S, Samoli E, Forsberg B, Michelozzi P, Boumghar A, Vonk JM, Bellini A, Atkinson R, Ayres JG, Sunyer J, Schwartz J, Katsouyanni K (2002) Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Commun Health 56:773-779
  • 27. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367-371
  • 28. Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I, Blake N (2009) Atmospheric composition change-global and regional air quality. Atmos Environ 43(33):5268-5350
  • 29. Morales KF, Paget J, Spreeuwenberg P (2009) Possible explanations for why some countries were harder hit by the pandemic influenza virus in 2009—A global mortality impact modeling study. BMC Infect Dis 17:642
  • 30. Mukherjee A, Agrawal M (2018) Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources Transfer Environ Chem Lett 16:1009-1016
  • 31. Myhre G, Drew S, Julia P (2013) Anthropogenic and natural radiative forcing The physical science basis. In: T. F. Stocker: 659-740
  • 32. Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2. 5 concentrations in Beijing based on multisource data. Atmos Environ 150:146-161
  • 33. Pasha SN, Harshavardhan A, Ramesh D, Shabana SMd (2019) Variation analysis of artificial intelligence machine learning and advantages of deep architectures. Int J Adv Sci Technol 28(17):488-495
  • 34. Patel H, and Swarndeep S (2019) Air pollution prediction system for smart city using data mining technique: a survey. 6(12).
  • 35. Pathakoti M, Muppalla A, Hazra S, Dangeti M, Shekhar R, Jella S, Mullapudi SS, Andugulapati P, and Vijayasundaram U (2020) An assessment of the impact of a nation-wide lockdown on air pollution-a remote sensing perspective over India.
  • 36. Persinger RL, Poynter ME, Ckless K, Janssen-Heininger YMW (2002) Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Mol Cell Biochem 234:71-80
  • 37. Ram VS, Giridhara RB, Dorairaj P (2020) COVID-19 pandemic in InMahatodia: Is the curve now flat? European Heart Journalehaa 493.
  • 38. Ratnam DV, Otsuka Y, Sivavaraprasad G, Dabbakuti JK (2019) Development of multivariate ionospheric TEC forecasting algorithm using linear time series model and ARMA over low-latitude GNSS station. Adv Space Res 63(9):2848-2856
  • 39. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624-3648
  • 40. Rob B, Raaschou-Nielsen O, Stafoggia M (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. The Lancet 383(9919):785-795
  • 41. Sallauddin M, Ramesh D, Harshavardhan A, Pasha SN, Shabana A (2019) A comprehensive study on traditional AI and ANN architecture. Int J Adv Sci Technol 28(17):479-487
  • 42. Shair FH (1974) Dispersion of an instantaneous cross - wind line source of tracer release. Atmos Environ 8:475-485
  • 43. Singal SP, Prasad R (2005) Analytical study of some observed micro meteorological data. J Air Pollut Contr 1:44-49
  • 44. Soh P-W, Chang J-W, Huang J-W (2018) Adaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relations. Ieee Access 6:38186-38199
  • 45. Sulaiman MA, Zafar MM, Afshan N, Kumari A (2021) Impact of lockdown on air pollutants during COVID-19 at Patna. India Asian J Atmosph Environ 15(4):62-77
  • 46. Tayanc M (2000) An assessment of spatial and temporal variation of sulfur dioxide levels over Istanbul, Turkey. Environ Pollut 107:61-69
  • 47. Tiwari R, Shuchi U, Parv S, Garg U, and Bisht S (2019) Air pollution level prediction system. Int J Innov Technol Explor Eng 8(6).
  • 48. Vijay Bhaskar B, Mehta VM (2010) Atmospheric particulate pollutants and their relationship with meteorology in ahmedabad. Aerosol Air Quality Res 10:301-315
  • 49. WHO (2016) WHO Global Urban Ambient Air Pollution Database, update 2016.
  • 50. Xiao F, Li Qi, Zhu Y, Hou J, Jin L, Wang J (2015) Artificial neural networks forecasting of PM2. 5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos Environ 107:118-128
  • 51. Yi L, Zhao L, Li H, Sun Yu (2018) Air quality forecasting based on cloud model granulation. EURASIP J Wirel Commun Netw 2018:1-10
  • 52. Zhao R, Xinxin Gu, Xue B, Zhang J, Ren W (2018) Short period PM2.5 prediction based on multivariate linear regression model. PLoS ONE 13(7):e0201011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-990cea18-42f2-4b64-9842-c3f97be848c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.