Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Methane is one of the most dangerous gases occurring in mining production. Being inseparably connected with the rock mass, it presents a serious risk to occupational safety and reduces the effectiveness of mining production. A particularly high methane hazard occurs directly during exploitation in longwall headings and the drivage of roadways. Exceeding the maximum allowable level of its concentration in these headings makes it necessary to disconnect all machines until this concentration level is reduced. This leads to unscheduled downtimes of such machines, thus increasing the costs of their operation and decreasing their effectiveness. The paper demonstrates the results from the analysis of machine downtimes in the drivage of roadways, caused by excessive methane concentration levels. The analyses were based on the indications from the system for automatic monitoring of the ventilation parameters in this heading. The results obtained clearly demonstrated that exceeded values of methane concentration caused a series of unexpected downtimes in the drivage process. As a result, the process was disturbed and its effectiveness reduced. The presented analyses are one of the first to address the issue of how methane emissions affect machine downtimes. However, this phenomenon represents a major problem that needs to be addressed comprehensively in order to minimise the losses arising out of the necessary disruptions to the exploitation process.
Wydawca
Czasopismo
Rocznik
Tom
Strony
197--210
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Silesian University of Technology, Poland
autor
- Silesian University of Technology, Poland
autor
- Łukasiewicz Research Network, Institute of Innovative Technologies EMAG, Poland
autor
- Silesian University of Technology, Poland
Bibliografia
- 1. Branny, M. and Filipek, W. (2008). Numerical simulation of ventilation of blind drifts with a force- exhaust overlap system in the condition of methan and dust hazards. Arch. Min. Sci., 53, pp. 221-234.
- 2. Brodny, J. and Tutak, M. (2016a). Analysis of methane emission into the atmosphere as a result of mining activity. Proceedings of 16th International Multidisciplinary Scientific GeoConference SGEM 2016, DOI: 10.5593/SGEM2016/HB43/S06.012.
- 3. Brodny, J. and Tutak, M. (2016b). Analysis of gases emitted into the atmosphere during an endogenous fire. Proceedings of 16th International Multidisciplinary Scientific GeoConference SGEM 2016, pp. 75-82. DOI: 10.5593/SGEM2016/HB43/S06.011.
- 4. Brodny, J. and Tutak, M. (2018). Analysis of methane hazard conditions in mine headings. Tehnički vjesnik/Technical Gazette, 25 (1), pp. 271-276. DOI:10.17559/TV-20160322194812.
- 5. Brodny, J. and Tutak, M. (2019a). Forecasting the distribution of methane concentration levels in mine headings by means of model-based tests and in-situ measurements. Arch. Control Sci., 29, pp. 25-39.
- 6. Brodny, J. and Tutak, M. (2019b). Analysing the utilisation effectiveness of mining machines using independent data acquisition systems: a case study. Energies, 12 (13), art. no. 2505.
- 7. Dziurzyński, W., Pałka, T., Krach, A. and Wasielewski, S. (2015). Rozwój systemów symulacji procesu przewietrzania w rejonie ściany z uwzględnieniem czujników systemu gazometrii. Prace Instytutu Mechaniki Górotworu PAN, 17, pp. 3-19.
- 8. Krause, E. (2005). Profilaktyka w pokładach metanowych zagrożonych sejsmicznie. Prace Naukowe GIG - Górnictwo i Środowisko, 3, pp. 65-79.
- 9. Krause, E. (2015). Krótkoterminowe prognozy wydzielania się metanu podczas wybierania ścian. Archives of Mining Sciences, 60(2), pp. 629-642.
- 10. Krause, E., and Dziurzyński, W. (2015). Projektowanie eksploatacji pokładów węgla kamiennego w warunkach skojarzonego zagrożenia metanowo-pożarowego. Główny Instytut Górnictwa, Katowice.
- 11. Krause, E. (2019). Zagrożenie metanowe w kopalniach węgla kamiennego. Główny Instytut Górnictwa, Katowice.
- 12. Kurnia, J.C., Sasmito, A.P. and Mujumdar, A.S. (2014). Simulation of a novel intermittent ventilation system for underground mines. Tunnelling and Underground Space Technology, 42, pp. 206-215.
- 13. Ordinance of the Minister of Energy On detailed requirements for conducting underground mining operations of 23 November 2016 (Journal of Laws of 2016, No. 2017, item 1118, as amended).
- 14. Szlązak, N. (2013). Metody odmetanowania pokładów węgla w górnictwie podziemnym. Górnictwo i Geologia, 8(4), pp. 75-88.
- 15. Szlązak, N. and Borowski, D. (2006). Badania wydzielania metanu do wyrobisk chodnikowych drążonych kombajnami w pokładach węgla. Górnictwo i Geoinżynieria, 30 , pp. 45-56.
- 16. Tutak, M. and Brodny, J. (2017). Analysis of Influence of Goaf Sealing from Tailgate On the Methane Concentration at the Outlet from the Longwall. IOP Conf. Series: Earth and Environmental Science 95 042025 doi :10.1088/1755-1315/95/4/042025.
- 17. Tutak, M. and Brodny, J. (2018). Analysis of the impact of auxiliary ventilation equipment on the distribution and concentration of methane in the tailgate. Energies, 11, 3076.
- 18. Tutak, M. and Brodny, J. (2019). Predicting Methane Concentration in Longwall Regions Using Artificial Neural Networks. Int. J. Environ. Res. Public Health, 16, 1406
- 19. Tutak, M. (2020). The influence of the permeability of the fractures zone around the heading on the concentration and distribution of methane. Sustainability,12(1), art. no. 16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-990c15b3-e2c0-422a-92bc-293f5a1c8829