Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a comprehensive study is carried out on the dynamic behaviour of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying along the length direction. The free vibration problem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied to generate the governing equations. The results are presented as non-dimensional natural frequencies for different material gradation models and different foundation stiffness variation models. Two distinct boundary conditions viz., clamped-clamped and simply supported-simply supported are considered in the analysis. The results are validated with existing literature and excellent agreement is observed between the results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
451--470
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, India
Bibliografia
- [1] J. Neuringer and I. Elishakoff. Natural frequency of an inhomogeneous rod may be independent of nodal parameters. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 456(2003):2731–2740, 2000. doi: 10.1098/rspa.2000.0636.
- [2] I. Elishakoff and S. Candan. Apparently first closed-form solution for vibrating: inhomogeneous beams. International Journal of Solids and Structures, 38(19):3411–3441, 2001. doi: 10.1016/S0020-7683(00)00266-3.
- [3] Y. Huang and X.F. Li. A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. Journal of Sound and Vibration, 329(11):2291–2303, 2010. doi: 10.1016/j.jsv.2009.12.029.
- [4] M. Şimşek, T. Kocatürk, and Ş.D. Akbaş. Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Composite Structures, 94(8):2358–2364, 2012. doi: 10.1016/j.compstruct.2012.03.020.
- [5] B. Akgöz and Ö. Civalek. Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 98:314-322, 2013. doi: 10.1016/j.compstruct.2012.11.020.
- [6] K. Sarkar and R. Ganguli. Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed–fixed boundary condition. Composites Part B: Engineering, 58:361–370, 2014. doi: 10.1016/j.compositesb.2013.10.077.
- [7] M. Rezaiee-Pajand and S.M. Hozhabrossadati. Analytical and numerical method for free vibration of double-axially functionally graded beams. Composite Structures, 152:488–498, 2016. doi: 10.1016/j.compstruct.2016.05.003.
- [8] M. Javid and M. Hemmatnezhad. Finite element formulation for the large-amplitude vibrations of FG beams. Archive of Mechanical Engineering, 61(3):469–482, 2014. doi: 10.2478/meceng2014-0027.
- [9] W.R. Chen, C.S. Chen and H. Chang. Thermal buckling of temperature-dependent functionally graded Timoshenko beams. Archive of Mechanical Engineering, 66(4): 393–415, 2019. doi: 10.24425/ame.2019.131354.
- [10] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
- [11] J. Ying, C.F. Lü, and W.Q. Chen. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures, 84(3):209–219, 2008. doi: 10.1016/j.compstruct.2007.07.004.
- [12] T. Yan, S. Kitipornchai, J. Yang, and X.Q. He. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93(11):2992–3001, 2011. doi: 10.1016/j.compstruct.2011.05.003.
- [13] A. Fallah and M.M. Aghdam. Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. European Journal of Mechanics – A/Solids, 30(4):571–583, 2011. doi: 10.1016/j.euromechsol.2011.01.005.
- [14] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
- [15] H. Yaghoobi and M. Torabi. An analytical approach to large amplitude vibration and postbuckling of functionally graded beams rest on non-linear elastic foundation. Journal of Theoretical and Applied Mechanics, 51(1):39–52, 2013.
- [16] A.S. Kanani, H. Niknam, A.R. Ohadi, and M.M. Aghdam. Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115:60–68, 2014. doi: 10.1016/j.compstruct.2014.04.003.
- [17] N. Wattanasakulpong and Q. Mao. Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Composite Structures, 119:346–354, 2015. doi: 10.1016/j.compstruct.2014.09.004.
- [18] F.F. Calim. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B: Engineering, 103:98–112, 2016. doi: 10.1016/j.compositesb.2016.08.008.
- [19] H. Deng, K. Chen, W. Cheng, and S. Zhao. Vibration and buckling analysis of doublefunctionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Composite Structures, 160:152–168, 2017. doi: 10.1016/j.compstruct.2016.10.027.
- [20] H. Lohar, A. Mitra, and S. Sahoo. Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation. Curved and Layered Structures, 6(1):90–104, 2019. doi: 10.1515/cls-2019-0008.
- [21] B. Karami and M. Janghorban. A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Structures, 143:106227, 2019. doi: 10.1016/j.tws.2019.106227.
- [22] I. Esen. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences, 153–154:21–35, 2019. doi: 10.1016/j.ijmecsci.2019.01.033.
- [23] L.A. Chaabane, F. Bourada, M. Sekkal, S. Zerouati, F.Z. Zaoui, A. Tounsi, A. Derras, A.A. Bousahla, and A. Tounsi. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71(2):185–196, 2019. doi: 10.12989/sem.2019.71.2.185.
- [24] M. Eisenberger and J. Clastornik. Vibrations and buckling of a beam on a variable Winkler elastic foundation. Journal of Sound and Vibration, 115(2):233–241, 1987. doi: 10.1016/0022-460X(87)90469-X.
- [25] A. Kacar, H.T. Tan, and M.O. Kaya. Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method. Mathematical and Computational Applications, 16(3):773–783, 2011. doi: 10.3390/mca16030773.
- [26] A. Mirzabeigy and R. Madoliat. Large amplitude free vibration of axially loaded beams resting on variable elastic foundation. Alexandria Engineering Journal, 55(2):1107–1114, 2016. doi: 10.1016/j.aej.2016.03.021.
- [27] H. Zhang, C.M. Wang, E. Ruocco, and N. Challamel. Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Engineering Structures, 126:252–263, 2016. doi: 10.1016/j.engstruct.2016.07.062.
- [28] M.H. Yas, S. Kamarian, and A. Pourasghar. Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method. Annals of Solid and Structural Mechanics, 9(1-2):1–11, 2017. doi: 10.1007/s12356-017-0046-9.
- [29] S.K. Jena, S. Chakraverty, and F. Tornabene. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express, 6(8):085051, 2019. doi: 10.1088/2053-1591/ab1f47.
- [30] S. Kumar, A. Mitra, and H. Roy. Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Engineering Science and Technology, an International Journal, 18(4):579–593, 2015. doi: 10.1016/j.jestch.2015.04.003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-990b2d0e-90fa-4e1e-b929-1cd1ef7cd8ef