PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rare-earth and trace elements of the lower Cambrian–Lower Cretaceous siliciclastic succession of NE Gondwana in Jordan : from provenance to metasomatism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present bulk-rock geochemical study aims to answer some questions concerning the distribution and variability of trace elements (TEs) and rare earth elements (REEs) in the lower Cambrian–Lower Cretaceous sandstones and mudstones of NE Gondwana in Jordan. The study proved that the REE and the TE distribution patterns in both detrital and authigenic, light and heavy minerals are controlled principally by the source-rock provenance, followed by an interplay of many factors: chemical weathering, recycling, hydraulic sorting, locally low-temperature, hydrothermal metasomatism, depositional environment and redox conditions, and diagenesis. On the basis of specific trace elements, trace-element ratios, and petrographic proxies, the provenance is constrained to be mainly felsic-, rarely mafic granitoids of the Arabian-Nubian Shield, and less commonly, recycled Palaeozoic and Mesozoic siliciclastic strata. REEs are hosted mainly in zircon, Ti-bearing minerals, and partly in clay minerals. They were depleted by both chemical weathering and recycling; nevertheless, they were enriched by subsequent hydraulic sorting and low-temperature, hydrothermal metasomatism. Chemical weathering initially depleted zirconium. However, this was counteracted by subsequent enrichment through recycling, hydraulic sorting, and low-temperature, hydrothermal metasomatism. The fractionation of the other TEs, due to these sedimentological factors during the genesis of subarkosic arenites, quartz arenites and mudstones, is discussed and some conclusions are derived. The Eu negative anomaly was enhanced significantly by recycling and low-temperature, hydrothermal metasomatism. Scandium abundance increased with decreasing grain size from coarse sand to the mud fraction. The recorded REE and TE fractionation might also apply to siliciclastics in similar, geological environments.
Rocznik
Strony
109--158
Opis fizyczny
Bibliogr. 97 poz., fot., tab., wykr.
Twórcy
  • Department of Geology, University of Jordan, Amman, 11942 Jordan
  • Department of Geology, University of Jordan, Amman, 11942 Jordan
  • Department of Mining Engineering, Tafila Technical University, Tafila, Jordan
  • Department of Geology, University of Jordan, Amman, 11942 Jordan
  • Department of Geology, University of Jordan, Amman, 11942 Jordan
Bibliografia
  • 1. Abed, A. M., Makhlouf, I. M., Amireh, B. S. & Khalil, B., 1993. Upper Ordovician glacial deposits in southern Jordan. Episodes, 16: 316-328.
  • 2. Abdelsalam, M. G. & Stern, J., 1996. Sutures and shear zones in the Arabian-Nubian Shield. Journal of African Earth Sciences, 23: 289-310.
  • 3. Al Shanti, A. M., 2009. Geology of the Arabian Shield. Scientific Publishing Center, King Abdulaziz University, Jeddah, 190 pp.
  • 4. Ali, S., Stattegger, K., Garbe-Schönberg, D., Frank, M., Kraft, S. & Kuhnt, W., 2014. The provenance of Cretaceous to Quaternary sediments in the Tarfaya Basin, SW Morocco: evidence from trace element geochemistry and radiogenic Nd-Sr isotopes. Journal of African Earth Sciences, 90: 64-76.
  • 5. Amireh, B. S., 1987. Sedimentological and Petrological Interplays of the Nubian Series in Jordan with Regard to Paleogeography and Diagenesis. Unpublished Ph.D. Thesis. TU Braunschweig, 232 pp.
  • 6. Amireh, B. S., 1991. Mineral composition of the Cambrian-Cretaceous Nubian Series of Jordan: provenance, tectonic setting and climatological implications. Sedimentary Geology, 71: 99-119.
  • 7. Amireh, B. S., 1992. Sedimentology and mineral composition of the Kurnub Sandstone in Wadi Qsieb, SW Jordan. Sedimentary Geology, 78: 267-283.
  • 8. Amireh, B. S., 1993. Three paleosols of the Nubian Series of Jordan: Climatologic, tectonic and paleogeographic implications. Dirasat, 20B: 33-62.
  • 9. Amireh, B. S., 1994. Heavy and clay minerals as tools in solving stratigraphic problems: a case study from the Disi Sandstone (Early Ordovician) and the Kurnub Sandstone (Early Cretaceous) of Jordan. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 4: 205-222.
  • 10. Amireh, B. S., 1997. Sedimentology and paleogeography of the regressive-transgressive Kurnub Group (Early Cretaceous) of Jordan. Sedimentary Geology, 112: 69-88.
  • 11. Amireh, B. S., 2000. The Early Cretaceous Kurnub Group of Jordan: Subdivision, characterization and depositional environment development. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1: 29-57.
  • 12. Amireh, B. S., 2015. Grain size analysis of the lower Cambrian- lower cretaceous clastic sequence of Jordan: sedimentological and paleo-hydrodynamic implications. Journal of Asian Earth Sciences, 97: 67-88.
  • 13. Amireh, B. S., 2018. Petrogenesis of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan: Provenance, tectonic, and climatic implications. Journal of Asian Earth Sciences, 154: 316-341
  • 14. Amireh, B. S., 2020. Weathering, recycling, hydraulic sorting and metamorphism/metasomatism implications of the NE Gondwana lower Cambrian-Lower Cretaceous siliciclastic succession of Jordan. Journal of Asian Earth Sciences, 191: 104228. https://doi.org/10.1016/j.jseaes.2020.104228
  • 15. Amireh, B. S. & Abed, A. M., 1999. Depositional environments of the Kurnub Group (Early Cretaceous) in northern Jordan. Journal of African Earth Sciences, 29: 449-468.
  • 16. Amireh, B. S., Amaireh, M. N. & Abed, A. M., 2008. Tectonosedimentary evolution of the Umm Ghaddah Formation (late Ediacaran-early Cambrian) in Jordan. Journal of Asian Earth Sciences, 33: 194-218.
  • 17. Amireh, B. S., Amaireh, M. N., Abu Taha, S. & Abed, A. M., 2019. Petrogenesis, provenance, and rare earth element geochemistry, southeast desert phosphorite, Jordan. Journal of African Earth Sciences, 150: 701-721.
  • 18. Amireh, B. S., Henius-Kunst, F., Jarrar, G. H. & Schneider, W., 1998. K-Ar dating, X-ray diffractometry, optical and scanning electron microscopy of glauconies from the Early Cretaceous Kurnub Group of Jordan. Geological Journal, 33: 49-65.
  • 19. Amireh, B. S., Schneider, W. & Abed, A. M., 1994a. Evolving fluvial-transitional-marine deposition through the Cambrian sequence of Jordan. Sedimentary Geology, 89: 65-90.
  • 20. Amireh, B. S., Schneider, W. & Abed, A., 1994b. Diagenesis and burial history of the Cambrian-Cretaceous sandstone series in Jordan. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 192: 151-181.
  • 21. Amireh, B. S., Schneider, W. & Abed, A., 2001. Fluvial-shallow marine-glaciofluvial depositional environments of the Ordovician System in Jordan. Journal of Asian Earth Sciences, 19: 45-60.
  • 22. Anonymous, 2005. Geochemical Atlas of Europe. The Association of the Geological Surveys of the European Union (EuroGeoSurveys)/ the Geological Survey of Finland, 9 pp.
  • 23. Avigad, D., Kolodner, K., Mcwilliams, M., Persing, H. & Weissbrod, T., 2003. Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology, 31: 227-230.
  • 24. Avigad, D., Morag, N., Abbo, A. & Gerdes, A., 2017. Detrital rutile U-Pb perspective on the origin of the great Cambro-Ordovician sandstone of North Gondwana and its linkage to orogeny. Gondwana Research, 51: 17-29.
  • 25. Avigad, D., Weissbrod, T., Gerdes, A., Zlatkin, O., Ireland, T. R. & Morag, N., 2015. The detrital zircon U-Pb-Hf fingerprint of the northern Arabian-Nubian Shield as reflectedby a late Ediacaran arkosic wedge (Zenifim formation; subsurface Israel). Precambrian Research. 266: 1-11.
  • 26. Basu, A., Bickford, M. & Deasy, R., 2016. Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: A dissent. Sedimentary Geology, 336: 26-35.
  • 27. Bau, M. & Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research. 59: 37-55.
  • 28. Bender, F., 1968. Geologie von Jordanien. 7. Beiträge zur regionalen Geologie der Erde. Gebrüder Borntraeger Bornträger, Berlin, 230 pp.
  • 29. Ben sera, A. S., 2018. Petrogenesis, geochemistry and Geochronology of Granitic and Granodioritic Suites in Aqaba Complex, Southern Jordan; Constraints from U-Pb Zircon Ages. Unpublished Doctoral Dissertation, University of Jordan, 141 pp.
  • 30. Bhatia, M. R. & Crook, A. W., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineralogy and Petrology, 92: 181-193.
  • 31. Biscaye, P. E., 1965. Mineralogy and sedimentation of Recent deep-sea clays in the Atlantic and adjacent seas and oceans. Geological Society American Bulletin, 76: 803-832.
  • 32. Blake, J. M., Peters, S. C. & Johannesson, K. H., 2017. Application of REE geochemical signatures for Mesozoic sediment provenance to the Gettysburg Basin, Pennsylvania. Sedimentary Geology, 349: 103-111.
  • 33. Bouch, J. E., Hole, M., Trewin, J. H., Chenery, S. & Morton, A. C., 2002. Authigenic apatite in a fluvial sandstone sequence: evidence for rare-earth element mobility during diagenesis and a tool for diagenetic correlation. Journal of Sedimentary Research, 72: 59-67.
  • 34. Bouch, J. E., Hole, M. J., Trewin, N. H. & Morton, A. C., 1995. Low-temperature aqueous mobility of the rare-earth elements during sandstone diagenesis: Geological Society of London, Journal, 152: 895-898.
  • 35. Cave, M. R. & Harmon, K., 1997. Determination of trace metal distributions in the iron oxide phases of red bed sandstones by chemometric analysis of whole rock and selective Leachate data. Analyst, 122: 501-512.
  • 36. Condie, K. C., 1991. Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta, 55: 2527-2531.
  • 37. Condie, K. C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104: 1-37.
  • 38. Cullers, R. L., 1988. Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danberg granite, Georgia, U.S.A. Lithos, 21: 301-314.
  • 39. Cullers, R. L., 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58: 4955-4972.
  • 40. Cullers, R. L., 1995. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical Geology, 123: 107-131.
  • 41. Cullers, R. L., Chaudhuri, S., Kilbane, N. & Koch, R., 1979. Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochimica et Cosmochimica Acta, 43: 1285-1302.
  • 42. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F. & Ryberg, P. T., 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society American Bulletin, 94: 222-235.
  • 43. Dumoulin, J. A., Slack, J. F., Whalen, M. T. & Harris, A. G., 2011. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the Carboniferous-Permian Lisburne Group, Northern Alaska. United States of America Geological Survey Professional Paper, 1776: 1-64.
  • 44. Elderfield, H. & Greaves, M. J., 1982. The rare earth elements in seawater. Nature, 296: 214-219.
  • 45. Feng, R. & Kerrich, R., 1990. Geochemistry of fine-grained clastic sediments in the Archaean Abitibi Greenstone Belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54: 1061-1081.
  • 46. Füchtbauer, H., 1974. Sediments and Sedimentary Rocks, Part II, Sedimentary Petrology. Wiley, New York, 464 pp.
  • 47. Ghanem, H. & Jarrar, G. H., 2013. Geochemistry and petrogenesis of the 595 Ma shoshonitic Qunai monzogabbro, Jordan. Journal of African Earth Sciences, 88: 1-14.
  • 48. Gvirtzman, G. & Weissbrod, T., 1984. The Hercynian Geanticline of Heleze and the late Paleozoic history of the Levant. In: Dixon, J. E. & Robertson, A. H. (eds), The Geological Evolution of the Eastern Mediterranean. Geological Society of London, Special Publication, 17: 177-186.
  • 49. Husseini, M. I., 2000. Origin of the Arabian plate structures: Amar collision and Najd rift. GeoArabia, 5: 527-542.
  • 50. Jarrar, G. H., Amireh, B. S. & Zachman, D., 2000. The major, trace and rare earth element geochemistry of glauconites from the Early Cretaceous Kurnub Group of Jordan. Geochemical Journal, 34: 207-222.
  • 51. Jarrar, G. H., Stern, R. J., Saffarini, G. & Al-Zubi, H., 2003. Late- and postorogenic Neoproterozoic intrusions of Jordan: implications for crustal growth in the northernmost segment of the East African Orogen. Precambrian Research, 123: 295-319.
  • 52. Jones, B. & Manning, A. C., 1994. Comparison of geochemical indices used for the interpretation of Paleoredox conditions in ancient mudstone. Chemical Geology, 11: 111-129.
  • 53. Kolodner, K., Avigad, D., Ireland, T. R. & Garfunkel, Z., 2009. Origin of Lower Cretaceous (‘Nubian') sandstones of Northeast Africa and Arabia from detrital zircon U-Pb SHRIMP dating. Sedimentology, 56: 2010-2023.
  • 54. Kolodner, K., Avigad, D., McWilliams, M., Wooden, J., Weissbrod, T. & Feinstein, S., 2006. Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geological Magazine, 143: 367-391.
  • 55. Kröner, A., 1984. Late Precambrian plate tectonic and orogeny: A need to redefine the term Pan-African. In: Klerks, J. & Michot, J. (eds), African Geology. Musée, R., l’Afriquc Centrale, Tervuren, pp. 23-28.
  • 56. Kröner, A., Eyal, M. & Eyal, Y., 1990. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates. Geology, 18: 545-548.
  • 57. Lawrence, R., Cox, R., Mapes, R. & Coleman, D., 2011. Hydrodynamic fractionation of zircon age populations. Geological Society American Bulletin, 123: 295-305.
  • 58. McBride, E. F., 1987. Diagenesis of the Maxon Sandstone (Early Cretaceous), Marathon region, Texas; a diagenetic quartzarenite. Journal of Sedimentary Petrology, 57: 98-107.
  • 59. McLennan, S. M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, 2000GC000109.
  • 60. McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M. J. & Basu, A. (eds), Processes Controlling the Composition of Clastic Sediments: Boulder, Colorado. Geological Society of America Special Paper, 284: 21-40.
  • 61. Moore, D. M. & Reynolds Jr., R. C., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, pp. 179-201.
  • 62. Morag, N., Avigad, D., Gerdes, E. & Harlavan, Y., 2012. 1000-580 Ma crustal evolution in the Northern-Arabian Shield revealed by U-Pb-Hf of detrital zircons from late Neoproterozoic sediments (Eilat area, Israel). Precambrian Research, 208: 197-212.
  • 63. Morton, A. C. & Hallsworth, C. R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124: 3-29.
  • 64. Müller, G., 1967. Methods in Sedimentary Geology, Part I. Sedimentary Petrology. Schweizerbart, Stuttgart, 283 pp. Nance, W. B. & Taylor, S. R., 1976. Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40: 1539-1551.
  • 65. Nesbitt, H. W. & Markovics, G., 1997. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of clastic sediments. Geochimica et Cosmochimica Acta, 61: 1653-1670.
  • 66. Nesbitt, H. W. & Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717
  • 67. Nesbitt, H. W. & Young, G. M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1523-1534.
  • 68. Ni, Sh., Ju, Y., Hou, Q., Wang, Sh., Liu, Q., Wua, Y. & Xiao, L., 2009. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process. Progress in Natural Science, 19: 1133-1139.
  • 69. O'Sullivan, D., Marenco, F., Ryder, C. L., Pradhan, Y., Kipling, Z., Johnson, B., Benedetti, A., Brooks, M., McGill, M., Yorks, J. & Selmer, P., 2020. Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations. Atmospheric Chemistry and Physics, 20: 12955-12982.
  • 70. Pearce, J. A., Harris, N. B. & Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
  • 71. Pi, H., Feng, G., Sharratt, B. S., Li, X. & Zheng, Z., 2014. Validation of SWEEP for contrasting agricultural land use types in the Tarim Basin. Soil Science. 179: 433-445.
  • 72. Powell, J. H., Abed, A. M. & Le Nindre, Y. M., 2014. Cambrian stratigraphy of Jordan. GeoArabia, 19: 81-134.
  • 73. Rasmussen, B., 1996. Early diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: A major sink for oceanic phosphorus. American Journal of Science, 296: 601-632.
  • 74. Riboulleau, A., Bout-Roumazeilles, V. & Tribovillard, N., 2014. Controls on detrital sedimentation in the Cariaco Basin during the last climatic cycle: insight from clay minerals. Quaternary Science Review, 94: 62-73.
  • 75. Romans, P. A., Brown, L. L. & White, J. C., 1975. An electron microprobe study of yttrium, rare earth, and phosphorus distributions in zoned and ordinary zircon. American Mineralogist, 60: 475-480.
  • 76. Roser, B. P. & Korsch, R. J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratios. Journal of Geology, 94: 635-650.
  • 77. Roser, B. P. & Korsch, R. J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119-139.
  • 78. Rudnick, R. & Gao, S., 2003. Composition of the continental crust. In: Holland, H. D. & Turekian, K. K. (eds), Treatise on Geochemistry, 3. Elsevier-Pergamon, Oxford, pp. 1-64.
  • 79. Saffarini, G. A. & Amireh, B. S., 2016. Distinguishing depositional environments of the Lower Cambrian- Lower Cretaceous siliciclastic sequence of Jordan using geostatistical techniques: A proposal. Arabian Journal of Geosciences, 9: 1-16.
  • 80. Saint-Marc, P., 1978. Arabian Peninsula. In: Moullade, M. & Nairn, A. E. (eds), The Phanerozoic Geology of the World 11, The Mesozoic, A. Elsevier, Amsterdam, pp. 435-462.
  • 81. Samuel, M. D., Be'eri-Shlevin, Y., Azer, M. K., Whitehouse, M. J. & Moussa, H. E., 2011. Provenance of conglomerate clasts from the volcano-sedimentary sequence at Wadi Rutig in southern Sinai, Egypt as revealed by SIMS U-Pb dating of zircon. Gondwana Research 20: 450-464.
  • 82. Sandler, A., Teutsch, N. & Avigad, D., 2012. Sub-Cambrian pedogenesis recorded in weathering profiles of the Arabian- Nubian Shield. Sedimentology, 59: 1305-1320.
  • 83. Schneider, W., Amireh, B. S. & Abed, A. M., 2007. Succession analysis of the Early Paleozoic sedimentary systems of Jordan. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 158: 225-247.
  • 84. Segev, A., Halicz, L., Steinitz, G. & Lang, B., 1995. Postdepositional processes on a buried Cambrian succession in southern Israel, north Arabian Massif: evidence from new K-Ar dating of Mn-nodules. Geological Magazine, 132: 475-385.
  • 85. Smith, M. P., Henderson, P., Jeffries, T. R., Long, J. & Williams, C. T., 2004. The rare earth elements and uranium in garnet from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constrains on processes in a dynamic hydrothermal system. Journal of Petrology, 45: 457-484.
  • 86. Speer, J. A., 1980. Zircon. Reviews in Mineralogy and Geochemistry, 5: 67-112.
  • 87. Stephenson, M. & Powell, J., 2013. Palynology and alluvial architecture in the Permian Umm Irna Formation, Dead Sea, Jordan. GeoArabia, 18: 17-60.
  • 88. Taylor, S. R. & McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp.
  • 89. Tucker, M., 2001. Sedimentary Petrology, 2nd ed. Blackwell Science, Oxford, 262 pp.
  • 90. Vermeesch, P., Avigad, D. & McWilliams, M. O., 2009. 500 m. y. of thermal history elucidated by multi-method detrital thermochronology of North Gondwana Cambrian sandstone (Eilat, Israel). Geological Society of America Bulletin, 121: 1204-1216.
  • 91. Warr, L. N., 2021. IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85: 291-320.
  • 92. Wedepohl, K. H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217-1232.
  • 93. Weissbrod, T. & Nachmias, Y., 1986. Stratigraphic significance of heavy minerals in the Late Precambrian-Mesozoic clastic succession (Nubian Sandstone) in the near East. Sedimentary Geology, 47: 263-291.
  • 94. White, W. M., 2013. Geochemistry. Wiley-Blackwell, West Sussex, 660 pp.
  • 95. White, W. M. & Klein, E., 2013. Composition of the oceanic crust. In: Rudnick, R. L. (ed.), The Crust. Treaties in Geochemistry 3. Elsevier, Amsterdam, pp. 457-492.
  • 96. Wright, J., Schrader, H. & Holser, W. T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 5I: 63l-644.
  • 97. Zhao, M.-Y. & Zheng, Y.-F., 2015. The intensity of chemical weathering: Geochemical constraints from marine detrital sediments of Triassic age in South China. Chemical Geology, 391: 111-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-990a5464-a727-457a-b987-3473aa5701d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.