Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of tests on dynamic stability of Bernoulli-Euler beam with damages. Damages (cracks) were modeled using three rotational springs. An analysis of the influence of crack depth and their position relative to the beam ends on dynamic stability of the beam was carried out. The problem of dynamic stability was solved by applying the mode summation method. Applying an orthogonal condition of eigenfunctions, the dynamic of the system was described with the use of the Mathieu equation. The obtained equation allowed the dynamic stability of the tested system to be analyzed. Stable and unstable solutions were analyzed using the Strutt card.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
519--522
Opis fizyczny
Bibliogr. 16 poz., fot., rys., wzory
Twórcy
autor
- Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
Bibliografia
- [1] T.G. Chondros, A.D. Dimarogonas, J. Yao, J. Sound Vib. 215 (1), 17-34 (1998), https://doi.org/10.1006/jsvi.1998.1640
- [2] D. Kindova-Petrova, J. Theor. Appl. Mech. Sofia 44 (4), 69-82 (2014), DOI: 10.2478/jtam-2014-0023
- [3] P.F. Rizos, N. Aspragathos, A.D. Dimarogonas, J. Sound Vib. 138 (3), 381-388 (1990), https://doi.org/10.1016/0022-460X(90)90593-O
- [4] W.M. Ostachowicz, M. Krawczuk, J. Sound Vib. 150 (2), 191-201 (1991), https://doi.org/10.1016/0022-460X(91)90615-Q
- [5] K.H . Barad, D.S. Sharma, V. Vyas, Procedia Engineering 51, 770-775 (2013).
- [6] O.J. Aldraihem, A. Baz, J. Sound Vib. 205 (5), 835-848 (2002), https://doi.org/10.1006/jsvi.2001.3976
- [7]G. Cederbaum, M. Mond, J. Appl. Mech. 59, 16-19 (1992), https://doi.org/10.1115/1.2899424
- [8] C.-C. Chen, M.-K. Yeh, J. Sound Vib. 240 (4), 747-764 (2001), https://doi.org/10.1006/jsvi.2000.3255
- [9] H.A. Evensen, R.M. Evan-Iwanowski, J. Appl. Mech.-T. ASME 33, 141-148 (1966), https://doi.org/10.1115/1.3624971
- [10] C.E. Majorana, C. Pellegrino, Engineering Computations 14 (7), 792-805 (1997), https://doi.org/10.1108/02644409710188709
- [11] K. Sato, V. Saito, V. Otomi, J. of Appl. Mech.-T. ASME 45 (3), 643-648 (1978), https://doi.org/10.1115/1.3424375
- [12] W. Sochacki, J. Sound Vib. 314 (1-2), 180-193 (2008), https://doi.org/10.1016/j.jsv.2007.12.037
- [13] W. Sochacki, J. Vibroengineering 15 (1), 280-290 (2013).
- [14] S.P. Timoshenko, V. Gere, Theory of Elastic Stability, Mc Graw–Hill - INC (1961).
- [15] Han-Ik Yoon, In-Soo Son, Sung-Jin Ahn, J. Mech. Sci. Technol. 21, 476-485 (2007)
- [16] K.-H. Kim, J.-H. Kim, J. Sound Vib. 233 (1), 119-135. (2000). doi:10.1006/Jsvi.1999.2793
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98f76915-772e-4fd8-9e0a-9069c0789658