PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ion Distributions in Water/Graphene Interface: A Molecular Dynamics Study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Classical Molecular Dynamics (MD) with a non-polarizable force field is used to quantify the ion size effect on structure and dynamics of the confined electrolyte solution by considering the series of sodium halides (NaX with X = = F, Cl, Br, and I). Ions and water transport were simulated through a rigid and neutral atomistic carbon wall (graphene). The results showed that the solid surface has a major effect on the ion distribution in nano-aqueous solutions near interfaces. Cl, Br, and I tend to be repelled from the regions where the density of water is high, while F was found to be significantly solvated by water. Due to confinement, the dynamical properties of the electrolyte solution were also observed on the anions and cations pairing through determining the self-diffusion coefficient.
Słowa kluczowe
Twórcy
autor
  • Lebanese University Faculty of Science, Physics Department Section 5, Nabatieh, Lebanon
  • Jinan University Lebanon
autor
  • Lebanese University Faculty of Science, Physics Department Section 5, Nabatieh, Lebanon
  • Jinan University Lebanon
autor
  • Jinan University Lebanon
autor
  • Lebanese University Faculty of Science, Physics Department Section 5, Nabatieh, Lebanon
Bibliografia
  • [1] P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, Xi. Wang, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution, Environmental Pollution 240, 493–505 (2018).
  • [2] S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks, Nature Reviews Materials 3, 17075 (2017).
  • [3] Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries, Advanced Materials 28, 3000–3006 (2016).
  • [4] J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism, Chemosphere 195, 351–364 (2018).
  • [5] P.S. Crozier, R.L. Rowley, Molecular dynamics simulation of continuous current flow through a model biological membrane channel, Phys. Rev. Lett. 86, 2467–2470 (2001).
  • [6] B. Roux, M. Karplus, Molecular dynamics simulations of the gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. 23, 731–761 (1994).
  • [7] M. Jardat, B. Hribar-Lee, V. Vlachy, Self-diffusion of ions in charged nanoporous media, Soft Matter. 8, 954–964 (2012).
  • [8] A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker, Fabrication of solid-state nanopores with singlenanometre precision, Nature Mater. 2, 537–540 (2003).
  • [9] L.R. Forrest, M.S. Sansom, Membrane simulations: bigger and better?, Curr. Opin. Struct Biol. 10, 174–181 (2000).
  • [10] S.P. Crozier, D. Henderson, R. Rowley, D.D. Busath, Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics, J. Biophys. 81, 3077–3089 (2001).
  • [11] I.C. Bourg, C.I. Steefel, ZnO-Based Dye-Sensitized Solar Cells, J. Phys. Chem. C 116, 11413–11425 (2012).
  • [12] C. Boiteux, S. Kraszewski, C. Ramseyer, C. Girardet, Ion conductance vs. pore gating and selectivity in KcsA channel: modeling achievements and perspectives, J. Molecular Modeling 13, 699–713 (2007).
  • [13] A. Bo¸tan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger, Hydrodynamics in Clay Nanopores, J. Phys. Chem. C 115, 16109–16115 (2011).
  • [14] M. Compoint, P. Carloni, C. Ramseyer, C. Girardet, Molecular dynamics study of the KcsA channel at 2.0-angstrom resolution: stability and concerted motions within the pore, Biochimica et Biophysica Acta – Biomembranes 1661, 26–39 (2004).
  • [15] B. Corry, T.W. Allen, S. Kuyucak, S.H. Chung, A model of calcium channels, Biochim. Biophys. Acta. 1509, 1–6 (2000).
  • [16] D. Horinek, R. Netz, Specific Ion Adsorption at Hydrophobic Solid Surfaces, Phys. Rev. Lett. 99, 226104 (2007).
  • [17] P. Jungwirth, D.J. Tobias, Specific Ion Effects at the Air/Water Interface, Chem. Rev. 106, 1259 (2006).
  • [18] D.L. McCaffrey, S.C. Nguyen, S.J. Cox, H. Weller, A.P. Alivisatos, P.L. Geissler, R.J. Saykally, Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water, PNAS 114, 13369–13373 (2017).
  • [19] C.P. James, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD, J. Comp. Chem. 26, 1781–1802 (2005).
  • [20] L.X. Dang, T.S. Chang, Molecular Mechanism of Ion Binding to the Liquid/Vapor Interface of Water, J. Phys. Chem. B 106, 235–238 (2002).
  • [21] A. Alexiadis, S. Kassinos, Molecular simulation of water in carbon nanotubes, Chem. Rev. 108, 5014–5034 (2008).
  • [22] C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M.J. Sliwinska-Bartkowiak, Effect of confinement on freezing and melting, Phys.: Condens. Matter 18, 15–68 (2006).
  • [23] J. Dweik, B. Coasne, J. Palmeri, P. Jouanna, P. Gouze, Inner and subsurface distribution of water and ions in weakly and highly hydrophilic uncharged nanoporous materials: A molecular dynamics study of a confined NaI electrolyte solution, J. Phys. Chem. C 116, 726–737 (2011).
  • [24] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188–190 (2001).
  • [25] B. Mukherjee, P.K. Maiti, C. Dasgupta, A. Sood, Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings, ACS Nano 2, 1189 (2008).
  • [26] E.E. Fenn, D.B. Wong, M.D. Fayer, Water dynamics at neutral and ionic interfaces, Proc. Natl. Acad. Sci. U.S.A. 106, 15243–15248 (2009).
  • [27] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437, 640–647 (2005).
  • [28] M. Schoen, J.H. Cushman, D.J. Diestler, C.L. Rhykerd, Fluid in microspores. II. Self-diffusion in a simple classical fluid in a silt pore, J. Chem. Phys. 88, 1394 (1988).
  • [29] D.J. Diestler, M. Schoen, A.W. Hertzner, J.H. Cushman, Fluids in microspores. III. Self-diffusion in a slit-pore with rough hard walls, J. Chem. Phys. 95, 5432 (1991).
  • [30] S.H. Krishnan, K.G. Ayappa, Modeling velocity autocorrelation functions of confined fluids: A memory function approach, J. Chem. Phys. 118, 690 (2003).
  • [31] B. Coasne, S.K. Jain, K.E. Gubbins, Adsorption, structure and dynamics of fluids in ordered and disordered models of porous carbons, Mol. Phys. 104, 3491–3499 (2006).
  • [32] T.W. Allen, S. Kuyucak, S.H. Chung, the effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions, J. Chem. Phys. 111, 7985–7999 (1999).
  • [33] A. Berezhkovskii, G. Hummer, Single-file transport of water molecules through a carbon nanotube, Phys. Rev. Lett. 89, 064503 (2002).
  • [34] B. Mukherjee, P.K. Maiti, C. Dasgupta, A.K. Sood, Strong correlations and Fickian water diffusion in narrow carbon nanotubes, J. Chem. Phys. 126, 124704–124711 (2007).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98f62d90-e194-46a0-ba09-c5f9a3b5ced9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.