PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural evolution and development of mechanical properties of spark plasma sintered WC–Co cemented carbides for machine parts and engineering tools

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
WC–Co, WC–Co–Cr3C2 and WC–Co–TaC–NbC cemented carbides were spark plasma sintered and the microstructure and main mechanical properties of the obtained specimens were investigated. A series of WC–6Co cemented carbides was heated to the sintering temperature of 1400 °C at 200 and 400 °C/min at compacting pressures of 50 and 60 MPa. It was shown that the specimens spark plasma sintered at 400 °C/min and at 60 MPa possess the best mechanical properties. These parameters were applied for sintering WC–6Co cemented carbides with addition of grain growth inhibitors such as Cr3C2 and TaC–NbC. The influence of the grain growth inhibitors content was studied. The X-ray diffraction test results show that decarburization of the WC phase occurred and carbon deficient W2C and η (Co3W3C, Co6W6C) phases were formed during spark plasma sintering, wherein an increase in compacting pressure from 50 to 60 MPa results in a diminution in the carbon diffusion processes. The mechanical properties of the cemented carbides were defined. The best ratio of hardness and fracture toughness was obtained for WC–6Co–1Cr3C2: hardness was 1808 ± 19 HV30 and fracture toughness was 10.17 ± 0.27 MPa m1/2.
Rocznik
Strony
215--223
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • Metal Forming Institute, 14 Jana Pawla II Street, 61-139 Poznan, Poland
autor
  • Poznan University of Technology, 5 Marii Sklodowskiej–Curie Square, 60-965 Poznan, Poland
Bibliografia
  • [1] A.L. Armstead, B. Li, Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC–Co) nanoparticle exposure, Int. J. Nanomed. 11 (2016) 6421–6433.
  • [2] D. Lison, R. Lauwerys, The interaction of cobalt metal with different carbides and other mineral particles on mouse peritoneal macrophages, Toxicol. Vitro 9 (1995) 341–347.
  • [3] W. Liu, X. Song, K. Wang, J. Zhang, G. Zhang, X. Liu, A novel rapid route for synthesizing WC–Co bulk by in situ reactions in spark plasma sintering, Mater. Sci. Eng. A 499 (2009) 476–481.
  • [4] W. Liu, X. Song, J. Zhang, F. Yin, G. Zhang, A novel route to prepare ultrafine-grained WC–Co cemented carbides, J. Alloys Compd. 458 (2008) 366–371.
  • [5] R.M. Raihanuzzaman, T.S. Jeong, R. Ghomashchi, Z. Xie, S.-J. Hong, Characterization of short-duration high-energy ball milled WC–Co powders and subsequent consolidations, J. Alloys Compd. 615 (2014) S564–S568.
  • [6] H.-C. Kim, I.-J. Shon, J.-K. Yoon, J.-M. Doh, Consolidation of ultra fine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical properties, Int. J. Refractory Metals Hard Mater. 25 (2007) 46–52.
  • [7] K.T. Akihiro Nino, Shigeaki Sugiyama, Hitoshi Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide, Mater. Trans. 53 (2012) 1475–1480.
  • [8] F.A. Deorsola, D. Vallauri, G.A. Ortigoza Villalba, B.D. Benedetti, Densification of ultrafine WC–12Co cermets by pressure assisted fast electric sintering, Int. J. Refract. Metals Hard Mater. 28 (2010) 254–259.
  • [9] R. Bao, J.-h. Yi, Y.-d. Peng, H.-z. Zhang, A.-k. Li, Decarburization and improvement of ultra fine straight WC–8Co sintered via microwave sintering, Trans. Nonferrous Metals Soc. China 22 (2012) 853–857.
  • [10] P. Arató, L. Bartha, R. Porat, S. Berger, A. Rosen, Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals, Nanostructured Mater. 10 (1998) 245–255.
  • [11] C. Jia, L. Sun, H. Tang, X. Qu, Hot pressing of nanometer WC–Co powder, Int. J. Refract. Metals Hard Mater. 25 (2007) 53–56.
  • [12] C. Wei, X. Song, S. Zhao, L. Zhang, W. Liu, In-situ synthesis of WC–Co composite powder and densification by sinter-HIP, Int. J. Refract. Metals Hard Mater. 28 (2010) 567–571.
  • [13] R. Bao, J. Yi, Effect of sintering atmosphere on microwave prepared WC–8 wt.%Co cemented carbide, Int. J. Refract. Metals Hard Mater. 41 (2013) 315–321.
  • [14] H.-C. Kim, D.-Y. Oh, I.-J. Shon, Sintering of nanophase WC–15vol.%Co hard metals by rapid sintering process, Int. J. Refract. Metals Hard Mater. 22 (2004) 197–203.
  • [15] H.-C. Kim, D.-Y. Oh, J. Guojian, I.-J. Shon, Synthesis of WC and dense WC–5vol.% Co hard materials by high-frequency induction heated combustion, Mater. Sci. Eng. A 368 (2004) 10–17.
  • [16] R.M. Raihanuzzaman, M. Rosinski, Z. Xie, R. Ghomashchi, Microstructure and mechanical properties and of pulse plasma compacted WC–Co, Int. J. Refract. Metals Hard Mater. 60 (2016) 58–67.
  • [17] M.R. Rumman, Z. Xie, S.-J. Hong, R. Ghomashchi, Effect of spark plasma sintering pressure on mechanical properties of WC–7.5wt% Nano Co, Mater. Design 68 (2015) 221–227.
  • [18] S. Zhao, X. Song, C. Wei, L. Zhang, X. Liu, J. Zhang, Effects of WC particle size on densification and properties of spark plasma sintered WC–Co cermet, Int. J. Refract. Metals Hard Mater. 27 (2009) 1014–1018.
  • [19] L. Espinosa-Fernández, A. Borrell, M.D. Salvador, C.F. Gutierrez-Gonzalez, Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and nonconventional techniques, Wear 307 (2013) 60–67.
  • [20] M. Mahmoodan, H. Aliakbarzadeh, R. Gholamipour, Sintering of WC–10%Co nano powders containing TaC and VC grain growth inhibitors, Trans. Nonferrous Metals Soc. China 21 (2011) 1080–1084.
  • [21] R. van der Merwe, N. Sacks, Effect of TaC and TiC on the friction and dry sliding wear of WC–6 wt.% Co cementem carbides against steel counterfaces, Int. J. Refract. Metals Hard Mater. 41 (2013) 94–102.
  • [22] R.M. Genga, G. Akdogan, J.E. Westraadt, L.A. Cornish, Microstructure and material properties of PECS manufactured WC–NbC–CO and WC–TiC–Ni cemented carbides, Int. J. Refract. Metals Hard Mater. 49 (2015) 240–248.
  • [23] D. Garbiec, P. Siwak, Microstructure and properties of spark plasma sintered WC–6Co cemented carbides, Metal Forming 28 (2017) 123–132.
  • [24] W.D. Schubert, H. Neumeister, G. Kinger, B. Lux, Hardness to toughness relationship of fine-grained WC–Co hardmetals, Int. J. Refract. Metals Hard Mater. 16 (1998) 133–142.
  • [25] G.S. Upadhyaya, Cemented Tungsten Carbides: Production, Properties, and Testing, William Andrew Publishing, Westwood, NJ, 1998.
  • [26] R.S. Parihar, S. Gangi Setti, R.K. Sahu, Preliminary investigation on development of functionally graded cemented tungsten carbide with solid lubricant via ball milling and spark plasma sintering, J. Compost. Mater. 52 (2018) 1363–1377.
  • [27] A. Simchi, F. Petzoldt, Cosintering of powder injection molding parts made from ultrafine WC–Co and 316L stainless steel powders for fabrication of novel composite structures, Metall. Mater. Trans. A 41 (2009) 233.
  • [28] T.S. Srivatsan, R. Woods, M. Petraroli, T.S. Sudarshan, An investigation of the influence of powder particle size on microstructure and hardness of bulk samples of tungsten carbide, Powder Technol. 122 (2002) 54–60.
  • [29] P. Siwak, D. Garbiec, Microstructure and mechanical properties of WC–Co, WC–Co–Cr3C2 and WC–Co–TaC cermets fabricated by spark plasma sintering, Trans. Nonferrous Metals Soc. China 26 (2016) 2641–2646.
  • [30] L. Sun, T.e. Yang, C. Jia, J. Xiong, VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering, Int. J. Refract. Metals Hard Mater. 29 (2011) 147–152.
  • [31] L. Sun, C. Jia, R. Cao, C. Lin, Effects of Cr3C2 additions on the densification, grain growth and properties of ultrafine WC–11Co composites by spark plasma sintering, Int. J. Refract. Metals Hard Mater. 26 (2008) 357–361.
  • [32] D.H. Xiao, Y.H. He, M. Song, N. Lin, R.F. Zhang, Y2O3- and NbC-doped ultrafine WC–10Co alloys by low pressure sintering, Int. J. Refract. Metals Hard Mater. 28 (2010) 407–411.
  • [33] D. Garbiec, P. Siwak, J. Jakubowicz, The effect of heating rate and sintering time on properties of WC–6Co nanocrystalline composites produced by spark plasma sintering, Compos. Theory Practice 15 (2015) 48–53.
  • [34] X. Wang, Y. Xie, H. Guo, O. Van der Biest, J. Vleugels, Sintering of WC–Co powder with nanocrystalline WC by spark plasma sintering, Rare Metals 25 (2006) 246–252.
  • [35] Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, Y.-D. Wang, The sintering mechanism in spark plasma sintering – proof of the occurrence of spark discharge, Scr. Mater. 81 (2014) 56–59.
  • [36] R. Jenkins, R.L. Snyder, Introduction to X-ray Powder Diffractometry, Wiley Online Library, 1996.
  • [37] O. Eso, Z. Fang, A. Griffo, Liquid phase sintering of functionally graded WC–Co composites, Int. J. Refract. Metals Hard Mater. 23 (2005) 233–241.
  • [38] O. Eso, Z.Z. Fang, A. Griffo, Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co, Int. J. Refract. Metals Hard Mater. 25 (2007) 286–292.
  • [39] X. Song, X. Liu, J. Zhang, Mechanism of conductive powder microstructure evolution in the process of SPS, Sci. China Ser. E Eng. Mater. Sci. 48 (2005) 258–269.
  • [40] C. Collard, Z. Trzaska, L. Durand, J.-M. Chaix, J.-P. Monchoux, Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering, Powder Technol. 321 (2017) 458–470.
  • [41] C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process, J. Eur. Ceram. Soc. 36 (2016) 741–748.
  • [42] O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16 (2014) 830–849.
  • [43] F.C.M.A. Formisano, A. Caraviello, L. Carrino, M. Durante, A. Langella, Influence of eta-phase on wear behavior of WC–Co carbides, Adv. Tribol. 2016 (2016) 6.
  • [44] M. Sakaki, M.S. Bafghi, J. Vahdati Khaki, Q. Zhang, F. Saito, Conversion of W2C to WC phase during mechano-chemical synthesis of nano-sizeWC–Al2O3 powder usingWO3-2Al–(1 + x) C mixtures, Int. J. Refract. Metals Hard Mater. 36 (2013) 116–121.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98e551cc-ee44-4b0e-9511-a64e402225f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.