PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The divisibility of the second-order minors of the numerators of transfer matrices by their minimal denominators for cyclic fractional linear systems is analyzed. It is shown that all nonzero second-order minors of the numerators of the transfer matrices are divisible by their minimal denominators if and only if the system matrices of fractional standard and descriptor linear systems are cyclic. The theorems are illustrated by examples of fractional standard and descriptor linear systems.
Twórcy
  • Faculty of Electrical Engineering, Białystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
  • [1] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, London.
  • [2] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
  • [3] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
  • [4] Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer, Berlin.
  • [5] Kaczorek, T. (2012). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
  • [6] Kaczorek, T. (2015). Stability of fractional positive nonlinear systems, Archives of Control Sciences 25(4): 491–496.
  • [7] Kaczorek, T. (2016). Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(3): 491–494.
  • [8] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
  • [9] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
  • [10] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier Science, New York.
  • [11] Ostalczyk, P. (2016). Discrete Fractional Calculus, World Scientific, River Edgle.
  • [12] Podlubny, I.(1999). Fractional Differential Equations, Academic Press, San Diego.
  • [13] Ruszewski, A. (2019a). Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences 29(3): 549–567.
  • [14] Ruszewski, A. (2019b). Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 67(3): 509–515.
  • [15] Sajewski, L. (2017a). Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays, 22nd International Conference a Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 482–487.
  • [16] Sajewski, L.(2017b). Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709–714.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98e10f9d-a434-4ead-9da3-885bdfb05986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.