PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cellular structure of detonation wave for hydrogenmethane-air mixtures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Paper presents a computational study of the fundamental detonation parameters of stoichiometric hydrogen-methane-air mixtures based on Chapman-Jouguet theory, ZND model and detonation wave cell size calculations. Detonation wave of gaseous fuel-air mixture has a multidimensional cellular structure consisting of cellular pattern that could be experimentally determined using smoked foil. The width of detonation cell correlates with several detonation dynamic parameters, e.g. initiation energy or critical tube diameter, and also reflects the stability of detonation wave. Methane-hydrogen mixture is used at different combustion devices like spark ignited engines, gas turbines, different kind of burners with premixed and diffusion flames. Series of calculations on detonation parameters of stoichiometric hydrogen-methane-air mixtures were made with different H2 contents in the mixture, from 10% up to 100% of hydrogen. The effects of the initial composition of the mixtures as well as initial pressure on the detonation velocity and cell size were investigated.
Rocznik
Tom
Strony
30--41
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska str., 00-665 Warsaw, PL
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska str., 00-665 Warsaw, PL
Bibliografia
  • [1] Karim G.A. et al., Methane-hydrogen mixtures as fuels. International Journal of Hydrogen Energy vol. 21, No. 7, 1996.
  • [2] Gauducheau J.L., Denet B., Searby G., A numerical study of lean CH4/H2/air premixed flames at high pressure. Combustion Science and Technology 137, 1998.
  • [3] Jackson G.S., Sai R., Plaia J.M., Boggs C.M., Kiger K.T., Influence of H2 on the response of lean premixed CH4 flames to high strained flows. Combustion and Flame 132, 2003.
  • [4] Ren J.-Y., Qin W., Egolfopoulos F.N., Tsotsis T.T., Strain-rate effects on hydrogen-enhanced lean premixed combustion, Combustion and Flame, 124, 2001.
  • [5] Bell S.R., Gupta M., Extension of the lean operating limit for natural gas fuelling of spark ignited engine using hydrogen blending, Combustion Science and Technology, 123, 1997.
  • [6] Carcassi M.N., Fineschi F., Deflagration of H2-air and CH4-air lean mixtures in a vented multicompartment environment. Energy 30, 2005.
  • [7] Mannan S. et al., Lees Loss Prevention in the Process Industries. vol. 2, Elsevier, 2006.
  • [8] Wingerden K., Bjerketvedt D., Bakke J. R., Detonations in pipes and in the open. www.gexcon.com.
  • [9] Goodwin D.G., Cantera User’s Guide. California Institute of Technology, 2002, www.caltech.edu.
  • [10] Thomas G.O., Some observation on flame acceleration and the development of detonation in process pipelines. 5th SAFETYNET Seminar, 1999.
  • [11] Lee J.H., Fast flames and detonations. ACS Symposium Series, No.249, The Chemistry of Combustion Processes, Ed. T.M. Sloane, 1984.
  • [12] Lee J.H., Knystautas R., Freiman A., High Speed Turbulent Deflagrations and Transition to Detonation in H2-Air Mixtures. Combustion and Flame vol. 56, 1984.
  • [13] Shepherd J., Kaneshige M., Teodorczyk A., Detonation Database. Caltech, 1998, www.caltech.edu.
  • [14] Oran E.S., Gamezo V. N., Origins of the deflagration-to-detonation transition in gas-phase combustion.Combustion and Flame vol. 148, 2007.
  • [15] Lee J.H., Dynamic Parameters of Gaseous Detonations. In Annual Review of Fluid Mechanics, 1984.Vol. 16.
  • [16] Wintenberger E., Shepherd J. E., Detonation Waves and Pulse Detonation Engines. http://www.galcit.caltech.edu/EDL/projects/pde/Ae103-012704.pdf.
  • [17] Oppenheim A. K., Soloukhin R. I., Experiments in Gas Dynamics of Explosions. In Annual Review of Fluid Mechanics, 1973. Vol. 5.
  • [18] Strelow R., Crooker A., The structure of marginal detonation waves, Acta Astronautica 1974.
  • [19] Austin J.M., Pintgen F., Shepherd J.E., Lead shock oscillation and decoupling in propagating detonations. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA-2005-1170, 2005.
  • [20] Gamezo V.N., Desbordes D., Oran E.S., Two dimensional reactive flow dynamics in cellular detonation waves. Shock Waves 1999.
  • [21] Ciccarelli G., Dorofeev S., Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, article in press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98de96c4-fc1f-413b-ac72-68c5f2c81b93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.