PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frothers and gas dispersion: A review of the structure-property-function relationship

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past 20 years quantitative measures of frother functions have been developed to try to replace such qualitative descriptors as “weak” and “strong”. One of these metrics is the critical coalescence concentration (CCC) that quantifies a frother’s ability to reduce bubble size; another is the concentration at minimum velocity (CMV) that quantifies a frother’s ability to reduce bubble rise velocity. The experimental procedure for the two measures is briefly outlined and the measures are shown to be related. Using CMV, based on more than 50 surfactants from the two main frother families, alcohols and polyglycols, the frother structure-property-function link is investigated. The structure variables were: in alcohols, alkyl chain length, and position of the methyl branch and hydroxyl group(s); and in polyglycols, alkyl chain length, and number of propylene oxide (PO) or ethylene oxide (EO) groups. On the argument that low CMV represents the desired outcome, the main findings are: the dominant effect of alkyl chain length in both alcohols and polyglycols; that for alcohols branched-chain isomers are superior to straight chain, with the best combination being OH at the terminus and the methyl branch as far away as possible; and for polyglycols, PO-based are superior to EO-based. Interpretation of these observations included the effect of structure on the following properties: surface activity, mass transfer rate, H-bonding, and molecule packing.
Słowa kluczowe
Rocznik
Strony
40--53
Opis fizyczny
Bibliogr. 81 poz., rys., tab.
Twórcy
autor
  • Department of Mining and Materials Engineering, McGill University, 3610 rue Robert-Bourassa, Montréal, Quebec, Canada H3A 0C5
autor
  • Department of Mining and Materials Engineering, McGill University, 3610 rue Robert-Bourassa, Montréal, Quebec, Canada H3A 0C5
Bibliografia
  • BASAŔOVȂ, P., VÁCHOVÁ, T., BARTOSKÁ, L., 2016. Atypical wetting behaviour of alcohol–water mixtures on hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 200-206.
  • BAUER, S.H., POLLACK, A., 1935. The Orientation of Unsymmetrical Molecules at Interfaces. Journal of Chemical Physics, 3, 401-405.
  • BAUDUIN, P., BASSE, A., TOURAUD, D., KUNZ, W., 2005. Effect of short non-ionic amphiphiles derived from ethylene and propylene glycol alkyl ethers on the CMC of SDS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 270–271, 8-12.
  • BAWN, C.E.H., 1932. The adsorption of gases and vapors on plane surfaces. Journal of the American Chemical Society. 54(1), 72-86.
  • BEHIN, J., VAHED, S., 2007. Effect of alkyl chain in alcohol deinking of recycled fibers by flotation process. Colloids and Surfaces A, 297 (1–3), 131–141.
  • CAPPUCCITI, F., FINCH, J.A. 2008. Development of new frothers through hydrodynamic characterization. Minerals Engineering, 21(12–14), 944-948.
  • CARLESS, J.E., CHALLIS, R.A., MULLEY, B.A., 1964. Nonionic surface-active agents. Part V. The effect of the alkyl and the polyglycol chain length on the critical micelle concentration of some monoalkyl polyethers. Journal of Colloid Science, 19(3), 201-212.
  • CAN, S.Z., MAGO, D.D., WALKER, R.A., 2006. Structure and organization of hexadecanol isomers adsorbed to the air/water interface. Langmuir, 22 (19), 8043–8049.
  • CHANG, C.-H., FRANSES, E.I., 1995. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 100, 1-45.
  • CHANG, C.H., WANG, N.-H.L., FRANSES, E.I., 1992. Adsorption dynamics of single and binary surfactants at the air/water interface. Colloids and Surfaces, 62(4), 321-332.
  • CHO, Y. S., LASKOWSKI, J. S., 2002. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64(2–3), 69-80.
  • CLIFT, R., GRACE, J.R., WEBER, M.E. 1978. Bubbles, Drops, and Particles. New York: Academic Press.
  • CORKILL, J.M., GOODMAN, J.F., OTTEWILL, R.H., 1961. Micellization of homogeneous non-ionic detergents. Trans. Faraday Soc, 57, 1627-1636.
  • CORKILL, J.M., G00DMAN, J.F., HARROLD, S.P., 1964. Thermodynamics of nucellization of non-ionic detergents. Trans. Faraday Soc, 60, 202-207.
  • COSGROVE, T., 2005. Colloid Science Principles, Methods and Applications. Department of Chemistry University of Bristol, Bristol, UK, Blackwell Publishing Ltd.
  • COX, J.K., YU, K. EISENBERG, A., LENNOX, R.B., 1999. Compression of polystyrene –poly (ethylene oxide) surface aggregates at the air/water interface. Phys. Chem. Chem. Phys., 1(18), 4417–4421.
  • CROZIER, R.D., KLIMPEL, R.R., 1989. Frothers: plant practice. Mineral Processing and Extractive Metallurgy Review, 5 (1–4), 257–279.
  • DUKHIN, S.S., KRETZSCHMAR, G., MILLER, R., 1995. Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment, Application. Elsevier Science. Amsterdam, Netherlands.
  • DZIEMBOWSKA, D., SZCZODROWSKA, B., 1994. Estimation of the OH…O interaction energy in intramolecular hydrogen bonds: a comparative study. Journal of Physical Organic Chemistry, 7 (3), 142–146.
  • ELMAHDY, A.M., FINCH, J.A., 2013. Effect of frother blends on hydrodynamic properties. International Journal of Mineral Processing, 123, 60-63.
  • FAINERMAN,V.B., MILLER, R., MÖHWALD, H., 2002. General Relationships of the Adsorption Behavior of Surfactants at the Water/Air Interface. The Journal of Physical Chemistry B, 106 (4), 809-819.
  • FINCH, J.A., DOBBY, G.S., 1990. Column Flotation. Oxford, England; New York, Pergamon.
  • FINCH, J.A., ZHANG, W., 2014. Frother function-structure relationship: dependence of CCC95 on HLB and the H-ratio. Minerals Engineering, 61, 1-8.
  • FIROOZ, A., CHEN, P., 2012. Surface tension and adsorption kinetics of amphiphiles in aqueous solutions: The role of carbon chain length and temperature. Journal of Colloid and Interface Science, 370 (1), 183-191.
  • FORGIARINI, A.M., SCORZZA, C., VELÁSQUEZ, J., VEJAR, F., ZAMBRANO, E., SALAGER, J.-L. 2010. Influence of the mixed propoxy/ethoxy spacer arrangement order and of the ionic head group nature on the adsorption and aggregation of extended surfactants. J. Surfactants Deterg., 13 (4), 451–458.
  • FRANK, C., FRIELINGHAUS, H., ALLGAIER, J., PRAST, H., 2007. Nonionic surfactants with linear and branched hydrocarbon tails: compositional analysis, phase behavior, and film properties in bicontinuous microemulsions. Langmuir, 23(12), 6526-6535.
  • FUERSTENAU, M.C., 1976. Flotation. American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, NY., USA.
  • FUKUHARA, R., TANIDA, H., NITTA, K., INA, T., URUGA, T., MATSUBARA, H., ARATONO, M., TAKIUE, T., 2014. Effect of Molecular Orientation on Monolayer and Multilayer Formations of Fluorocarbon Alcohol and Fluorocarbon-α,ω-diol Mixture at the Hexane/water Interface. The Journal of Physical Chemistry B, 118 (43), 12451-12461.
  • FONG, C., GREAVES, T.L., HEALY, T.W., DRUMMOND, C.J., 2015. The effect of structural modifications on the solution and interfacial properties of straight and branched aliphatic alcohols: The role of hydrophobic effects. Journal of Colloid and Interface Science, 449, 364-372.
  • GÉLINAS, S., FINCH, J.A., GOUET-KAPLAN, M., 2005. Comparative real-time characterization of frother bubble thin films. J. Colloid Interface Sci., 291 (1), 187–191.
  • GOMEZ, C.O., CASTILLO, P., ALVAREZ, J., 2014. A frother characterization technique using a lab mechanical flotation cell. Proceedings of XXVII International Mineral Processing Congress IMPC 2014, IMPC 2014 Organization, Santiago, Chile, Volume 1, Chapter 2, pp: 71-81.
  • HACKER, M., II, BACHMAN, K., MESSER, W., 2009. Pharmacology: Principles and Practice. Academic Press, San Diego. Elsevier.
  • HARDIE, C.A., LEICHTLE, G.F., FINCH, J.A., GOMEZ, C.O., 1998. Application of mineral processing techniques to the recycling of wastepaper. In: Proceedings of the 30th Annual Meeting of the Canadian Mineral Processors Conference, CIM, Ottawa, ON, Canada, pp. 553–572.
  • HERZBERGER, J., NIEDERER, K., POHLIT, H., SEIWERT, J., WORM, M., WURM, F.R., FREY, H., 2016. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chemical Reviews,116(4), 2170-2243.
  • HOMMELEN, J. R., 1959. The elimination of errors due to evaporation of the solute in the determination of surface tensions. Journal of Colloid Science, 14(4), 385-400.
  • JAHUR, A. M., NAMBOODIRI,V., MATHI, P., SINGH, A.K., 2017. Alkyl Chain Length Dependent Structural and Orientational Transformations of Water at Alcohol–Water Interfaces and Its Relevance to Atmospheric Aerosols. The Journal of Physical Chemistry Letters, 8 (7), 1637-1644.
  • JÁVOR, Z., SCHREITHOFER, N., HEISKANEN, K., 2014. Validity of critical coalescence concentration in dynamic conditions. International Journal of Mineral Processing, 127, 16-22.
  • JOOS, P., SERRIEN, G., 1989. Adsorption kinetics of lower alkanols at the air/water interface: Effect of structure makers and structure breakers. Journal of Colloid and Interface Science, 127(1), 97-103.
  • KLEVENS, H., 1953. Structure and aggregation in dilate solution of surface active agents. The Journal of the American Oil Chemists' Society, 30 (2), 74–80.
  • KLIMPEL, R.R., ISHERWOOD, S., 1991. Some industrial implications of changing frother chemical structure. International Journal of Mineral Processing, 33 (1–4), 369–381.
  • KNAUTH, P., SABBAH, R., 1990. Energetics of inter- and intramolecular bonds in alkanediols. IV. The thermochemical study of 1,2-alkanediols at 298.15 K. Thermochimica Acta, 164, 145–152.
  • KUAN, S.H., FINCH, J.A., 2010. Impact of talc on pulp and froth properties in F150 and 1-pentanol frother systems. Minerals Engineering, 23(11–13), 1003-1009.
  • KUHN, L.P., 1952. The Hydrogen bond. I. Intra- and intermolecular hydrogen bonds in alcohols. Journal of the American Chemical Society, 74 (10), 2492–2499.
  • LASKOWSKI, J.S., 1998. Frothers and Frothing. In: Frothers and Flotation in Frothing in Flotation II, Laskowski, J. S. and Woodburn, E. T. (Eds.), pp. 1-49.
  • LASSKOWSKI, J.S., 2003. Fundamental Properties of Flotation Frothers. In: Proceedings of the 22nd International Mineral Processing Congress, Cape Town, South Africa. pp. 788-797.
  • LE, T.N., PHAN, C.M.M., ANG, H.M., 2012. Influence of hydrophobic tail on the adsorption of isomeric alcohols at air/water interface. Asia-Pacific Journal of Chemical Engineering, 7 (2), 250–255.
  • LEE, Y.-C., LIU, H.-S., LIN, S.-Y., 2003. Adsorption kinetics of C10E4 at the air–water interface: consider molecular interaction or reorientation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 212( 2–3), 123-134.
  • LEVICH, V.G., 1962. Physicochemical Hydrodynamics. Ch 8: Motion of drops and bubbles in fluid media, Englewood Cliffs, N.J., Prentice-Hall.
  • LIN, I. J., FRIEND, J. P., ZIMMELS, Y., 1973. The effect of structural modifications on the hydrophile--lipophile balance of ionic surfactants. Journal of Colloid and Interface Science, 45(2), 378-385. LIU, Y., 2006. Some consideration on the Langmuir isotherm equation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274(1–3), 34-36.
  • LUM, K., CHANDLER, D., WEEKS, J.D., 1999. Hydrophobicity at Small and Large Length Scales. The Journal of Physical Chemistry B., 103 (22), 4570-4577.
  • LYNCH, A.J., HARBORT, G., NELSON, M., 2010. History of Flotation. AusIMM, Carlton, Melbourne, Australia (Spectrum Series: issue 18).
  • Mulley, B.A., Metcalf, A.D. 1962. Nonionic surface-active agents. Part IV. The critical micelle concentration of some polyoxyethylene glycol monohexyl ethers in binary and ternary systems. Journal of Colloid Science, 17(6):523-530.
  • NESSET, J.E., FINCH, J.A., GOMEZ, C.O., 2007. Operating variables affecting the bubble size in forced-air mechanical flotation machines. In: Proceedings AusIMM 9th Mill Operators’ Conference, Fremantle, Australia. 55–65.
  • NGUYEN, A.V., SCHULZE, H. J., 2004. Colloidal Science of Flotation. Surface Science Series. vl. 118, Marcel Dekker, New York.
  • PAL, R., MASLIYAH, J., 1990. Oil recovery from oil in water emulsions using a flotation column. The Canadian Journal of Chemical Engineering, 68 (6), 959–967.
  • PATRICK, G. L., 2013. An Introduction to Medicinal Chemistry. 5th edition. Oxford University Press.
  • POSNER, A.M., ANDERSON, J.R., ALEXANDER, A.E. 1952. The surface tension and surface potential of aqueous solutions of normal aliphatic alcohols. Journal of Colloid Science, 7(6), 623-644.
  • ROMERO, C.M., PÁEZ, M.S., MIRANDA, J.A., HERNÁNDEZ, D.J., OVIEDO, L.E., 2007. Effect of temperature on the surface tension of diluted aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol and 2,5-hexanediol. Fluid Phase Equilibra, 258 (1), 67–72.
  • ROSEN, M. J., ARONSON, S., 1981. Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloids and Surfaces, 3(3), 201-208.
  • SASTRY, N.V., VAGHELA, N.M., AAWAL, V. K., 2012. Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilibria, 327, 22-29.
  • SINGH, J., YADAV, L.D.S., 2010. Organic Chemistry. vol. II, Pragati Prakashan Educational Publisher, Pragati House, Begum Bridge, Meerut, India.
  • SOBOCINSKI, R.L., PEMBERTON,J.E., 1992. Determination of alcohol solvent orientation and bonding at silver electrodes using surface-enhanced Raman scattering: methanol, ethanol, 1-propanol, and 1-pentanol. Langmuir, 8 (8), 2049-2063.
  • SOHN, S., KIM, D., 2005. Modification of Langmuir isotherm in solution systems—definition and utilization of concentration dependent factor. Chemosphere, 58(1), 115-123.
  • SOMASUNDARAN, P., WAND, D., 2006. Solution Chemistry: Minerals and Reagents. Elsevier, Amsterdam; Boston, USA.
  • STAUFFER, C.E., 1968. The interfacial properties of some propylene glycol monoesters. J. Colloid Interface Sci., 27 (4), 625–633.
  • SZÉKELY, N. K., ALMÁSY, L, RÃDULESCU, A., ROSTA, L., 2007. Small-angle neutron scattering study of aqueous solutions of pentanediol and hexanediol. Journal of Applied Crystallography, 40, s307-s311.
  • TAN, Y.H., FINCH, J.A., 2016a. Frother structure-property relationship: Effect of hydroxyl position in alcohols on bubble rise velocity. Minerals Engineering, 92, 1-8.
  • TAN, Y.H., FINCH, J.A., 2016b. Frother structure - property relationship: Effect of alkyl chain length in alcohols and polyglycol ethers on bubble rise velocity. Minerals Engineering, 95, 14-20.
  • TAN, Y.H., FINCH, J.A., 2016c. Frother structure - property relationship: Aliphatic alcohols and bubble rise velocity. Minerals Engineering, 96-97, 33-38.
  • TAN, Y.H., ZHANG, W., FINCH, J.A. 2016. Frother structure - property relationship: Effect of polypropylene glycol alkyl ethers on bubble rise velocity. Proceedings of IMPC 2016, Quebec City, QC, Canada.
  • TANFORD, C., 1972. Hydrophobic free energy, micelle formation and the association of proteins with amphiphiles. Journal of Molecular Biology, 67(1), 59-74.
  • THUROW, H., GEISEN, K., 1984. Stabilisation of dissolved proteins against denaturation at hydrophobie interfaces. Diabetologia, 27 (2), 212–218.
  • THEODORE, L., RICCI, F., 2011. Mass Transfer Operations for the Practicing Engineer. Ch. 7. Rate Principles. A John Wiley & Sons Inc. Publicatio, Hoboken, New Jersey. pp: 71-93.
  • VAHVASELKA, K. S., SERIMAA, R., TORKKELI, M., 1995. Determination of liquid structures of primary alcohols methnol, ethanol, 1-propanol, 1-butanol and 1 –octanol by X-ray scaterring J. Applied Crystallography, 28, 189-195.
  • VAN DUYNHOVEN, J., LEIKA, A., VAN DER HOEVEN, P.C., 2005. Quantitative assessment of alkyl chain branching in alcohol-based surfactants by nuclear magnetic resonance. Journal of Surfactants and Detergents, 8 (1), 73–82.
  • VARADARAJ, R., BOCK, J., VALINT, Jr. P., ZUSHMA, S., THOMAS, R., 1991. Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 1. Surface and instantaneous interfacial tensions. The Journal of Physical Chemistry, 95 (4), 1671–1676.
  • VARADARAJ, R., BOCK, J., ZUSHMA, S., BRONS, N., 1992. Influence of hydrocarbon chain branching on interfacial properties of sodium dodecyl sulfate. Langmuir, 8(1), 14-17.
  • WILLS, B.A., FINCH, J.A. 2016. Wills Mineral Processing Technology. (8th ed.) Elsevier, 225 Wyman Street, Waltham, MA 02451, USA.
  • ZHANG, W., NESSET, J.E., RAO, S.R., FINCH, J.A., 2012. Characterizing frothers through critical coalescence concentration (CCC95)-hydrophilic-lipophilic balance (HLB). Minerals, 2 (3), 208–227.
  • ZHANG, W., TAN, Y.H., FINCH, J.A., 2016. Synthesis and characterization of alkyl, propoxy, ethoxy-based frothers. Minerals Engineering, 95, 66-73.
  • ZOREBSKI, E., ZOREBSKI, M., 2014. A comparative ultrasonic relaxation study of lower vicinal and terminal alkanediols at 298.15 K in relation to their molecular structure and hydrogen bonding. The Journal of Physical Chemistry B, 118 (22), 5934–5942.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98dc717e-d3b3-422d-939b-9f4bd787abdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.