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ABSTRACT

An approximate solution for the streaming velocity generated by flat and weakly focused
transducers was derived by directly solving the Dirichlet boundary conditions for the
Poisson equation. The theoretical calculations were verified using a purpose-designed 32
MHz pulsed Doppler unit. The applied average acoustic power was changed from 1 uW
to 6 mW. The experiments were done on 4 mm diameter flat and focused transducers.
The streaming velocity was measured along the ultrasonic beam from 0 to 20 mm.
Streaming was induced in a solution of water and corn starch. The experimental results
showed that for a given acoustic power the streaming velocity was independent of the
starch density in water changed from 0.3 grams to 40 grams of starch in | litre of
distilled water. For applied acoustic powers, the streaming velocity changed linearly from
0.2 to 40 mm/s. Both, the theoretical solutions for plane and focused waves, and the
experimental results were in good agreement.

INTRODUCTION

The acoustic waves which propagate in
liquids observe the general laws of
hydrodynamics. In a linear medium the
dependence between the pressure and the
particle velocity is linear; in other words, the
acoustic impedance is constant. In a non-
linear medium, the impedance varies in time
and the acoustic pressure has a constant
component and by  analogy to electric
systems, it may be said that a non-linear

medium acts like a pressure rectifier. Waves
with finite amplitudes are accompanied by
such events as the radiation pressure and
streaming,

THEORY

Nyborg [1965] solved the Navier-
Stokes equation with an accuracy up to the
second order approximations. Wu and Du
[1993] developed the theory of deriving the
approximate solution to the Nyborg equation.
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Adopting relevant assumptions, the authors
obtained the Poisson equation as a
description of the component v,, of the vector
v = [va, v2,] of the streaming velocity:

ol

Vv, =
® e, 2 we,

2 (1)

Although Wu and Du [1993] undertook
to solve equation (1) from the beginning, the
following  well-known general solution
[Jackson, 1975] includes the relevant
boundary conditions for the equation of this

type:
1
vy, (X) = IQ(x')G(x, x')d x +Ej [T(x',x)] dz (2)
Q T
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where Q(x) =

zZ9
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T(x,x") = G{x,x")on'v,, (x") ~v,, (x")d0n'G(x,x"),
G(x,x") satisfies the

A G(x,x')=-4nd(x,x")and is the
function for the relevant boundary conditions
(Dirichlet's or Neuman's) and 8(x,x’) is the
Dirac function, x=(x,y,z) in Cartesian
coordinates and x=(r,z) in cylindrical
coordinates for acoustical field axially
symmetrical, z is propagation  axis.
dn'=nV'v,, (x') is the component normal to

equation
Green

the boundary surface of the gradient of the
function vy, n is the vector unit normal to the
surface Z, Q) denotes 3-dimensional volume
bounded by the surface Z, d’x is the
differential element in Q. It was assumed that
on the boundary Z for z=0, are given:

V2o (X,¥,2=0)=V1,(1,z=0)=v2,(r)=0, r = yx* +y’
It means that the Dirichlet boundary problem
was considered.

For the case of a bounded plane wave
with a circular section, perpendicular to the
propagation axis z, with the radius a, and for
a Gaussian beam generated by a circular
transducer with the radius a, the following
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solutions were obtained for the component
vz, of the vector of the streaming velocity v
along the beam axis, r = 0.

1) Linear (bounded) plane wave
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2) A weakly focused beam with a
Gaussian intensity distribution

3)

v,,(0,2) = KT,/A(z') g7
4]
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where;
Kzaloa‘\/;, e BRFj(R)
he,B242 (2- F(R))® + C®)
I’ _
F(R) = . C(R) = FR)[R - F(R)]

r,’ +(BR)?
R is the geometrical focal length of the
acoustic lens, F(R) is the physical focal length
(the position of the maximum of the field
intensity distribution), r, = (1/2)ka’ B is a
constant related to the Gaussian beam and is
1 on the transducer surface (z = 0).

In their computer calculations the
authors used the numerical approximation of
the function erfc(x) [Handbook of
Mathematical Functions, 1968]:

erfc(x) = efc(x)e = £(X),

le(x)[ < 15-1077



5 1
)= X 1 ) S e 5
efe(x) = Y p,f(x)". [(x) SR (5)

n={

p=0.3275911, p,=0.254829592,
p2=-0.284496736, p;=1.421413741,
ps=-1.453152027, ps=1.0614005429

Substituting approximation (5) into (4),
the following expression, convenient for
computer calculations is obtained.

Lpanlm =77 .
sz(0,2)=~g-°-h€— [JA@Z)e

2\5;10013 e
(6)
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where z, depends in fact on z and the
properties of the function JA(z)e™* . In our
calculations for z<3R we adopted z,= 3R. For
z24R it is sufficient to adopt zg=R. For large

z, but ones smaller than 1l/a, z, may be
determined using the relation z+zg<max[1/a,
2R)].

It was assumed in the calculations that
in water ot = 2.53-10"'° £ Np/cmHz” and p =
0.01 Poise.

It should be stressed that Wu and Du's

and our solutions hardly differ for the plane
wave close to the transducer. A more serious
problem occurred for numerical attempts to
calculate their equation for steaming velocity
for focused transducers, for it contains
additional terms which have no counterparts
in the solution of the Poisson equation
obtained using the well-known boundary
problem theory for this equation. The
solution from equation (6) is convergent; on
the other hand, the numerical results are
about twice lower than those presented by
Wu and Du. To confirm the doubts about the
correctness of the solution given by Wu and
Du, their results for a continuous wave and
the results of the measurements performed by
Starritt et al. [1989] were compared.

In the calculations, the following
assumptions were made: Py, = 0.1 W, f=
3.5 MHz, the transducer diameter =20 mm
with its focus at depths of 7.3 cm and 11 cm,
where the streaming velocity was about 3.4
cm/s. Starritt measured streaming as a
function of the distance from the transducer.
The power, frequency and diameter of the
transducer were the same as those in the
calculations made by Wu and Du, but the
head was focused at 9.5 cm depth. In the
focus the streaming velocity was close to 2
cm/s, about twice lower than that calculated
theoretically by Wu and Du, but close to the
results from formula (6).

METHOD AND RESULTS
Measuring system:

The streaming was measured using a
Doppler ultrasound blood flowmeter. The 32
MHz pulsed Doppler prototype was
developed at the Institute of Fundamental
Technological Research. The transmitter of
the flowmeter generated a 32 MHz burst,
lasting 0.5 ps. The repetition frequency was
31.25 KHz.. The flowmeter receiver had a
gate with 0.5 ps duration and variable delay.
The receiver bandwidth was expanded from
the DC up to 4 kHz. The Doppler signal was
digitized, stored and next analyzed using the
oscilloscope LeCroy 9450A. The signal
processing included FFT spectrum analysis
and averaging of 100 successive Doppler
spectra. The frequency resolution was 0.1 Hz
to 1 Hz. The ultrasonic probe contained a
lithium niobate transducer, glued to a glass
lens or to the flat glass plate. The lens and
plate were made from BK-7 optic glass.
Three probes were used in the measurements,
each containing a transducer with a 4 mm
diameter. Two probes were focused at depths
of 8 and 12 mm, respectively, whereas the
third had no focus. The effective transmitter
voltage was measured at the transducer

339



clamps, the electric power was calculated and
next the acoustic power was estimated on the
basis of Mason's equivalent transducer model.
The estimated power was about 1.4 mW for
each of the three transducers.

Measurements:

Streaming was measured in a
rectangular container filled with a corn starch
suspension in distilled water at 20° C.
Experimentally, it was found that for 1 g of
starch per | litre of water it is possible to
obtain a Doppler signal with a satisfactory
signal to noise ratio (>10 dB).

The system consisted of a Doppler
flowmeter and an ultrasonic transducer
working at 32 MHz, submerged in a
container with water. The Doppler signal was
analyzed using the oscilloscope LeCroy
9450A with an FFT analysis module. The
maximum flow velocity was determined as
the maximum frequency below which 90% of

streaming velocity increased linearly with the
power. The correlation coefficient was
R=0.9992.

[mm/s]
50

20 4o A .......... 0
10 + ‘ :

velocity

0 1 2 3 4 5 6 7
power {mW]

Fig. 1. Streaming velocity in function of the
radiated acoustic power; plane 32 MHz
transducer.

The  streaming  velocities  were
experimentally measured for  three
transducers. Fig.2 shows the streaming

velocity for a plane transducer. Fig.3 shows

the power of the Doppler signal lies. The the streaming velocities for transducers
; ; focused at 8 mm and 12 mm depth,
dependence of the streaming velocity on the .
: : respectively.
radiated acoustic power was measured. It was
found that for the power transmitted in the
range between 0.001 mW to 6 mW the
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Fig. 2. Streaming velocity vs. distance, plane 32 MHz transducer. The radius of the transducer
is equal to 4 mm. The solid line - theoretical calculations, points - experimental results.
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Fig. 3. Streaming vs. distance; focused transducers - focal distance = 8 mm and 12 mm, radius
of the transducer is equal to 4 mm. The solid line - theoretical calculations, points -

experimental results.

The flow wvelocity changes were
measured for different densities of the starch
suspension in water.
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Fig 4 Axial streaming velocity vs. density of
starch in water, acoustic power=0.3 mW

It was found that for densities between
0.3 g/l and 40 g/l the streaming velocity
hardly varied. The maximum deviation from
the mean value was - 5.3%. The stdev/mean
ratio= 0.07. For a higher starch concentration
than 40 g/l, the streaming velocity fell; 1t was
probably caused by higher viscosity of the
suspension.

CONCLUSIONS

The streaming velocities generated by
plane and weakly focused ultrasonic heads
were calculated. The authors drew on the
general assumptions of Wu and Du [1993],
who derived the Poisson equation as a
description of the axial component of the
streaming velocity. In contrast to them, the
present authors applied the well-known
general solution for the relevant Dirichlet
boundary problem for the equation of this
type.

The measured velocity changes as a
function of depth confirm very well the
theoretical calculations for all the three heads.
Good quantitative agreement was obtained
between the measured streaming velocities
and those calculated theoretically. The latter
were modified with respect to the solution of
the Poisson equation given earlier by Wu and
Du. The slight differences are probably
caused by the inaccuracy of estimation of the
maximum Doppler frequency and the
impossibility of accurate measurement of the
real acoustic power radiated by transducers.
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The measurements for the frequency of
32 MHz indicated a linear dependence of the
streaming velocity on the acoustic power. It
may be assumed that the addition of starch
did not affect the streaming velocity
measurements for no changes were found in
the measured velocities with percentage
variations of the starch content in the
suspension.

Given the measurement repeatability
and accuracy it may be hoped that in the
future the streaming velocity measurement
can be applied in evaluating the acoustic
power radiated by a transducer. This method
may be used to measure the acoustic power
of ultrasonographic probes meant for medical
diagnostics.
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