PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the optimal frequency of the primary measuring transducer of the thickness of dielectric coatings of metal surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie optymalnej częstotliwości pierwotnych przetworników pomiarowych do pomiaru grubości powłok dielektrycznych na powierzchniach metalowych
Języki publikacji
EN
Abstrakty
EN
The article provides an analysis of the physical processes underlying the operation of the measuring transducer, with a time based information presentation. A mathematical model is developed that describes the process of free oscillation attenuation excited in the LC-contour of primary measuring transducer, and analyzes and evaluates the influence of external factors that influence the measurement results. The ways of elimination of their influence on the results of measuring control are offered.
PL
Artykuł zawiera analizę procesów fizycznych leżących u podstaw pracy przetwornika pomiarowego wraz z prezentacją informacji w czasie. Opracowano model matematyczny opisujący proces tłumienia drgań swobodnych wzbudzanych w obwodzie LC głównego przetwornika pomiarowego, analizujący i oceniający wpływ czynników zewnętrznych na wyniki pomiarów. Proponowane są sposoby wyeliminowania ich wpływu na wyniki kontroli pomiarów.
Rocznik
Strony
56--59
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
  • Vinnytsia National Technical University, Faculty of Intelligent Information Technology and Automation, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Faculty of Intelligent Information Technology and Automation, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Faculty of Intelligent Information Technology and Automation, Vinnytsia, Ukraine
  • Vinnytsia National Agrarian University, Department of technological processes and equipment for processing and food production, Vinnytsia, Ukraine,
  • M. Kh. Dulaty Taraz Regional University, Taraz, Kazakhstan
  • M. Kh. Dulaty Taraz Regional University, Taraz, Kazakhstan
Bibliografia
  • [1] Azarov O. D., Dudnyk O. V., Kaduk O. V., Smolarz A., Burlibay A.: Method of correcting of the tracking ADC with weight redundancy conversion characteristic. Proc. of SPIE 9816, 2015, 98161V.
  • [2] Azarov O. D., Murashchenko O. G., Chernyak O. I., Smolarz A., Kashaganova G.: Method of glitch reduction in DAC with weight redundancy. Proc. of SPIE 9816, 2015, 98161T.
  • [3] Bereziuk O. V., Lemeshev M. S., Bogachuk V. V., Duk M.: Means for measuring relative humidity of municipal solid wastes based on the microcontroller Arduino UNO R3. Proc. of SPIE 10808, 2018, 108083G [http://doi.org/10.1117/12.2501557].
  • [4] Cathey J.: Electric Machines. McGraw-Hill, 2001.
  • [5] Fitzgerald A. E., Kingsley C. Jr., Umans S. D.: Electric Machinery. McGraw- Hill, 2005.
  • [6] Grover F. W.: Inductance Calculations. Dover Publications, 2009.
  • [7] Hechler O., Axmann G., Donnay B.: The right choice of steel. Sections.arcelormittal.com (11.01.2019).
  • [8] ISO 6892-1:2016 Metallic materials - Tensile testing - Part 1: Method of test at room temperature, 2016.
  • [9] Kozlov L. G., Bogachuk V. V., Bilichenko V. V. et al.: Determining of the optimal parameters for a mechatronic hydraulic drive. Proc. of SPIE 10808, 2018, 1080861 [http://doi.org/10.1117/12.2501528].
  • [10] Kvyetnyy R. N., Sofina O. Yu., Lozun A. V. et al.: Modification of fractal coding algorithm by a combination of modern technologies and parallel computations. Proc. of SPIE 9816, 2015, 98161R.
  • [11] Obertyukh R. R., Slabkyi A. V., Marushchak M. V. et al.: Dynamic and mathematical models of the hydraulic-pulse device for deformation strengthening of materials. Proc. of SPIE 10808, 2018, 108084Y [http://doi.org/10.1117/12.2501519].
  • [12] Ogorodnikov V. A., Zyska T., Sundetov S.S.: The physical model of motor vehicle destruction under shock loading for analysis of road traffic accident. Proc. of SPIE 10808, 2018, 108086C [http://doi.org/10.1117/12.2501621].
  • [13] Osadchuk V. S., Osadchuk A. V.: The magneticreactive effect in transistors for construction transducers of magnetic field. Electronics and Electrical Engineering 3(109), 2011, 119-122.
  • [14] Pain H. J.: The physics of vibrations and waves. John Wiley & Sons, 2005.
  • [15] Pavlov S. V., Kozhemiako V. P., Kolesnik P. F. et al.: Physical principles of biomedical optics: monograph. VNTU, Vinnytsya 2010.
  • [16] Polishchuk L. K., Kozlov L. G., Piontkevych O. V. et al.: Study of the dynamic stability of the conveyor belt adaptive drive. Proc. of SPIE 10808, 2018, 1080862 [http://doi.org/10.1117/12.2501535].
  • [17] Semenov A., Osadchuk O., Semenova O., Bisikalo O., Vasilevskyi O., Voznyak O.: Signal Statistic and Informational Parameters of Deterministic Chaos Transistor Oscillators for Infocommunication Systems. International Scientific-Practical Conference Problems of Infocommunications – Science and Technology (PIC S&T), 2018.
  • [18] Trishch R., Nechuiviter O., Dyadyura K., Vasilevskyi O., Tsykhanovska I., Yakovlev M.: Qualimetric method of assessing risks of low quality products. MM Science Journal 2021(4), 2021, 4769–4774.
  • [19] Vasilevskyi O. M., Kulakov P. I., Dudatiev I. A. et al.: Vibration diagnostic system for evaluation of state interconnected electrical motors mechanical parameters. Proc. of SPIE 10445, 2017, 104456C [http://doi.org/10.1117/12.2280993].
  • [20] Vasilevskyi O. M.: Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. International Journal of Metrology and Quality Engineering 5, 2014, 403.
  • [21] Vasilevskyi O., Kulakov P., Kompanets D. et al.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. of SPIE 10808, 2018, 108082E [http://doi.org/10.1117/12.2501578].
  • [22] Vassilenko S. V., Teixeira J.P., Pavlov S.: Energy harvesting: an interesting topic for education programs in engineering specialities. Proc. of Internet, Education, Science IES-2016, 2016, 149-156.
  • [23] Vedmitskyi Y. G., Kukharchuk V. V., Hraniak V. F.: New non-system physical quantities for vibration monitoring of transient processes at hydropower facilities, integral vibratory accelerations. Przeglad Elektrotechniczny 93(3), 69-72, 2017.
  • [24] Webster J. G., Eren H.: Measurements, instrumentation and sensors handbook: Spatial, mechanical, thermal and radiation measurement. CRC press, 2014.
  • [25] Wojcik W., Kisala P.: The method for the recovery of the apodization function of the fiber Bragg gratings on the basis of its spectra. Przeglad Elektrotechniczny 86(10), 2010, 127-130.
  • [26] Wojcik W.: Application of fibre-optic flame monitoring systems to diagnostics of combustion process in power boilers. Bulletin of the Polish Academy of Sciences-Technical Sciences 56 (2), 2008, 177-195.
  • [27] Wójcik W., Vasilevskyi O., Didych V. et al.: Method of evaluating the level of confidence based on metrological risks for determining the coverage factor in the concept of uncertainty. Proc. of SPIE 10808, 2018, 108082C [http://doi.org/10.1117/12.2501576].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98d9ebd3-007f-49c0-b40d-e6b010ff90d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.