PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of nano-structured duplex and ferritic stainless steel powders by dry milling and its comparison with wet milling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, elemental Fe, Cr and Ni powders were used to fabricate nano-structured duplex and ferritic stainless steel powders by using high energy planetary ball milling. We have studied the effect of milling atmosphere like wet (toluene) and dry (argon) milling of elemental Fe-18Cr-13Ni (duplex) and Fe-17Cr-1Ni (ferritic) powders for 10 h in a dual drive planetary mill. Stearic acid of 1wt.% was added during milling to avoid agglomeration. The dry and wet milled duplex and ferritic stainless steel powders were characterized by XRD, SEM and particle size analysis techniques. We have found that both the milling atmospheres have great influence in controlling the final particle morphology, size and phase evolution during milling. It was reported that dry milling is more effective in reducing particle size than the wet milling. The Nelson-Riley method of extrapolation was used to calculate the precise lattice parameter and Williamson-Hall method was used to calculate the crystallite size and lattice strain of both the stainless steel milled in argon atmosphere. Dry milled duplex and ferritic stainless steel were then consolidated by conventional sintering method at 1100, 1200 and 1300°C temperatures under argon atmosphere for 1 hour.
Twórcy
autor
  • Bartin University, Department of Metallurgical and Materials Engineering, Bartin-74100, Turkey
autor
  • Rectorate of Bartin University, Bartin-74100, Turkey
autor
  • National Institute of Technology, Department of Metallurgical and Materials Engineering, Rourkela-769008, India
Bibliografia
  • [1] L. A. Dobrzanski, Z. Brytan, M. Actis Grande, M. Rosso, Arch. Mater. Sci. Eng. 28, 217-223 (2007).
  • [2] S. Herenu, I. Alvarez-Armas, A. F. Armas, Scripta Mater. 45, 739-745 (2001).
  • [3] H. Miyamoto, T. Mirnaki, S. Hashimoto, Mater. Sci. Eng. A. 319, 779-783 (2001).
  • [4] M. J. Schofield, R. Bradsha, R. A. Cottis, Mater. Perform. 35, 65-70 (2009).
  • [5] R. Shashanka, D. Chaira, Powder Technology. 278, 35-45 (2015).
  • [6] K. J. Kurzydłowski, Bull. Pol. Acad. Sci. Tech. Sci. 52, 275 (2004).
  • [7] Austral Wright Metals, Stainless Steel-Properties and Applications of Ferritic Grade Stainless Steel, Aug 31, 2008.
  • [8] R. Shashanka, B. E. Kumara Swamy, S. Reddy, D. Chaira, Anal. Bioanal. Electrochem. 5, 455-466 (2013).
  • [9] Sathish Reddy, B. E. Kumara Swamy, S. Arun, Mohan Kumar, R. Shashanka, H. Jayadevappa, Chemical Sensors. 2, 1-8 (2012).
  • [10] C. Suryanarayana, Prog. Mater. Sci. 46, 1-184 (2001).
  • [11] A. K. Nayak, R. Shashanka, D. Chaira, 5th National Conference on Processing and Characterization of Materials, IOP Conf. Series: Materials Science and Engineering, 115, 012008 (2016).
  • [12] R. Shashanka, Anal. Bioanal. Electrochem. 10, 349-361 (2018).
  • [13] R. Shashanka, International Journal of Scientific & Engineering Research. 8, 588-594 (2017).
  • [14] Hye Jin Jung, Youngku Sohn, Hong Gye Sung, Hyung Soo Hyun, Weon Gyu Shin, Powder Technology. 269, 548-553 (2015).
  • [15] Union Process, Planetary Ball Mills 101, Union Process, Inc. 1925 Akron-Peninsula Road, Akron, Ohio, Aug 21, 2017. https://www.unionprocess.com/planetary-ball-mill-basics.html
  • [16] R. Shashanka, D. Chaira, Powder Technol. 259, 125-136 (2014).
  • [17] I. Ismail, M. Hashim, K. A. Matori, R. Alias, J. Hassan, J. Magn. Magn. Mater. 323, 1470-1476 (2011).
  • [18] R. Shashanka, D. Chaira, B. E. Kumara Swamy, Int. J. Electrochem. Sci. 10, 5586-5598 (2015).
  • [19] R. Shashanka, D. Chaira, B. E. Kumara Swamy, International Journal of Scientific & Engineering Research. 6, 1863-1871 (2015).
  • [20] R. Shashanka, D. Chaira, B. E. Kumara Swamy, International Journal of Scientific & Engineering Research. 7, 1275-1285 (2016).
  • [21] R. Shashanka, D. Chaira, Mater Charact. 99, 220-229 (2015).
  • [22] R. Shashanka, D. Chaira, D. Chakravarty, Journal of Materials Science and Engineering B. 6 (5-6), 111-125 (2016).
  • [23] R. Shashanka, D. Chaira, Acta Metall. Sin. (Engl. Lett.) 29, 58-71 (2016).
  • [24] R. Shashanka, D. Chaira, Tribology Transactions. 60, 324-336 (2017).
  • [25] S. Pandya, K. S. Ramakrishna, A. R. Annamalai, A. Upadhyaya, Mater. Sci. Eng. A. 556, 271-277 (2012).
  • [26] K. Vijayalakshmi, V. Muthupandi, R. Jayachitra, Mater. Sci. Eng. A. 529, 447-451 (2011).
  • [27] P. Guiraldenq, O. H. Duparc, Metall. Res. Technol. 114, 613 (2017).
  • [28] D. A. Huerta, Victor Sosa, M. C. Vargas, J. C. Ruiz-Suarez, Phys. Rev. E. 72, 031307 (2005).
  • [29] Lauren Juliet Ayers, The hardening of type 316 L stainless steel welds with thermal aging, Massachusetts Institute of Technology, 2012.
  • [30] B. D. Cullity, S. R. Stock, Elements of X-Ray diffraction, Pearson, 2003. (Paperback, ISBN-13: 9780131788183).
  • [31] S. Gupta, R. Shashanka, D. Chaira, 4th National Conference on Processing and Characterization of Materials, IOP Conf. Series: Materials Science and Engineering. 75, 012033 (2015).
  • [32] Q. Meng, N. Zhou, Y. Rong, S. Chen, T. Y. Hsu, Xu Zuyao, Acta. Mater. 50, 4563-4570 (2002).
  • [33] M. H. Enayati, M. R. Bafandeh, J. Alloy. Compd. 454, 228-232 (2008).
  • [34] T. Haghir, M. H. Abbasi, M. A. Golozar, M. Panjepour, Mater. Sci. Eng. A. 507, 144-148 (2009).
  • [35] M. Wang, H. Sun, L. Zou, G. Zhang, S. Li, Z. Zhou, Powder. Technol. 272, 309-315 (2015).
  • [36] F. Tehrani, M. H. Abbasi, M. A. Golozar, M. Panjepour, Mater. Sci. Eng. A. 528, 3961-3966 (2011).
  • [37] E. Salahinejad, M. J. Hadianfard, M. Ghaffari, R. Amini, Sh. Bagheri Mashhadi, A. K. Okyay, Adv. Powder. Tech. 24, 605-608 (2013).
  • [38] S. Noh, B. K., Choi, S. H. Kang, T. K. Kim, Nucl. Eng. Technol. 46, 857-862 (2014).
  • [39] M. Gojic, A. Nagode, B. Kosec, S. Kozuh, S. Savli, T. Holjevac Grguric, L. Kosec, Eng. Fail. Anal. 18, 2330-2335 (2011).
  • [40] R. Shashanka, D. Chaira, B. E. Kumara Swamy, Archives of Metallurgy and Materials. 63, 749-763 (2018).
  • [41] Bhadeshia, H. K. D. Hansraj, Honeycombe, R. W. Kerr, Steels: Microstructure and Properties (3rd ed.), Butterworth-Heinemann, (2006). ISBN 978-0-7506-8084-4.
  • [42] R. A. Ricks, G. S. Barritte, P. R. Howell, Proc. Int. Conf. on Solid-Solid Phase Transformations, Natural Science Foundation/Met. Soc. AIME 463-8 (1982).
  • [43] I. Manika, J. Maniks, Acta Mater. 54, 2049-2056 (2006).
  • [44] J. H. Gong, J. J. Wu, Z. D. Guan, J. Eur. Ceram. Soc. 19, 2625-2631 (1999).
  • [45] H. Buckle, in: The Science of Hardness Testing and Its Research Application, ed. by J. H. Westbrook, H. Conrad, ASM, Metal Park, 453 (1973).
  • [46] B. W. Mott, Micro-indentation Hardness Testing, Butterworths Scientific Publications, London, 1956.
  • [47] H. Buckle, Metall. Rev. 4, 49-100 (1959)
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98d4542b-4fd0-4c5e-8c52-f1dd91d64eba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.