PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selected aspects of non-orthogonal multiple access for future wireless communications – for IoT

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper has provided an overview of selected IoT architectures, relevant requirements towards 5G (and beyond) systems as well as indication of NOMA techniques suitability as a multiple access technique and recent developments in the area of radio interface for IoT coexisting with 5G (and beyond) mobile networks. The authors assume that IoT networks in the future will be augmented with NOMA-capable sink-nodes (proxy or gateway) that can deliver aggregated data from multiple sensors for delivery to the cloud or other server. The main aim of this paper is to go beyond state of the art available nowadays and indicate directions for NOMA that make it even more attractive in combination with edge computing, cloud-RAN and especially AI/ML to improve future 6G networks.
Słowa kluczowe
EN
IoT networks   NOMA   5G  
Twórcy
  • College of Engineering, Electrical & Computer Engineering, University of Nebraska – Lincoln, USA
  • Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] 3rd Generation Partnership Project (3GPP), 2013. TR 36.888 Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE, Release 12 v(12.0.0).
  • [2] 3rd Generation Partnership Project (3GPP), 2017. TR.38.802 Study on New Radio Access Technology Physical Layer Aspects, Release 14 (v14.2.0).
  • [3] 3rd Generation Partnership Project (3GPP), 2018. TR28.801 Study on management and orchestration of network slicing for next generation network, Release 15.
  • [4] 3rd Generation Partnership Project (3GPP), 2018. TR38.812 Study on Non-Orthogonal Multiple Access (NOMA) for NR, Release 16 (v16.0.0).
  • [5] 3rd Generation Partnership Project (3GPP), 2020. TR 21.916 Summary of Rel-16 Work Items, Release 16 (v1.0.0).
  • [6] 5G-CORAL Project, 2019. Deliverable D4.2 – 5G-CORAL Proof of Concept and Future Directions. August 2019, Online, Avalaible: http://5g-coral.eu/wpcontent/uploads/2019/09/D4.2_FINAL.pdf.
  • [7] AIOTI, 2019. IoT Relation and Impact on 5G. Online, Available: https://aioti.eu/wp-content/uploads/2019/03/AIOTI-IoT-relation-and-impact-on-5G-190308-R2-published.pdf.
  • [8] AIOTI, 2020. AIOTI – High Level Architecture. Release 5.0, Whitepaper, https://aioti.eu/wpcontent/uploads/2020/12/AIOTI_HLA_R5_201221_Published.pdf.
  • [9] Amjad M., Musavian L., Aïssa S., 2020. Link-Layer Rate of NOMA with Finite Blocklength for Low-Latency Communications. IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 1-6, doi: 10.1109/PIMRC48278.2020.9217106.
  • [10] Bashar M. et al., 2019. NOMA/OMA mode selection-based cell-free massive MIMO. ICC 2019-2019 IEEE International Conference on Communications (ICC), IEEE.
  • [11] Boviz D., 2017. Communications multi-utilisateurs dans les réseaux d’accès radio centralisés: architecture, coordination et optimisation. Autre, Université Paris- Saclay, Français. ffNNT: 2017SACLC035ff. fftel-01591285f.
  • [12] Callejo-Rodriguez M.A. et al., 2008. EuQoS: End-To-End QoS over Heterogeneous Networks. First ITU-T Kaleidoscope Academic Conference – Innovations in NGN: Future Network and Services, Geneva, Switzerland, 177-184, doi: 10.1109/KINGN.2008.4542264.
  • [13] Chang Z. et al., 2018. Energy-Efficient and Secure Resource Allocation for Multiple-Antenna NOMA With Wireless Power Transfer. IEEE Transactions on Green Communications and Networking, vol. 2, no. 4, 1059-1071, Dec. 2018, doi: 10.1109/TGCN.2018.2851603.
  • [14] Chen X., Benjebbour A., Li A., Harada A., 2014. Multi-user proportional fair scheduling for uplink non-orthogonal multiple access (NOMA). Proc. IEEE 79th Veh. Technol. Conf. (VTC Spring), 1-5, May 2014.
  • [15] D2.2–Refined design of 5G-CORAL edge and fog computing system and future directions. Online, Available: http://5g-coral.eu/?page_id=37.
  • [16] Driouech S., Sabir E., Ghogho M., Amhoud E.-M., 2021. D2D Mobile Relaying Meets NOMA – Part I: A Biform Game Analysis. Sensors, 21, 702, https://doi.org/10.3390/s21030702.
  • [17] Endo Y., Kishiyama Y., Higuchi K., 2012. Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference. Proc. Int. Symp. Wireless Commun. Syst. (ISWCS), 261-265, Aug. 2012.
  • [18] ETSI TR 103 527 (the present document): Virtualized IoT Architectures with Cloud Back-ends. Online, Available: https://www.etsi.org/deliver/etsi_tr/103500_103599/103527/01.01.01_60/tr_103527v010101p.pdf
  • [19] Fayaz M., Yi W., Liu Y., Nallanathan A., 2020. Transmit Power Pool Design for Grant-Free NOMA-IoT Networks via Deep Reinforcement Learning.
  • [20] FIREFLY – Zolertia, https://zolertia.io/product/firefly/.
  • [21] iCore Deliverable 2.5 (D2.5), Final architecture Reference Model. Online, Available: https://cordis.europa.eu/docs/projects/cnect/8/287708/080/deliverables/001- 20141031finalarchitectureAres20143821100.pdf.
  • [22] Islam S.M.R., Avazov N., Dobre O.A., Kwak K.-S., 2016. Power-domain nonorthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Commun. Surveys Tuts., vol. 19, no. 2, 721-742, 2nd Quart. 2017
  • [23] Kaneko M., Randrianantenaina I., Dahrouj H., Elsawy H., Alouini M.-S., 2020. On the Opportunities and Challenges of NOMA-Based Fog Radio Access Networks: An Overview. IEEE Access, vol. 8, 205467-205476, doi: 10.1109/ACCESS.2020.3037183.
  • [24] Kassab R., Simeone O., Popovski P., 2018. Coexistence of URLLC and eMBB Services in the C-RAN Uplink: An Information-Theoretic Study. IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 1-6, doi: 10.1109/GLOCOM.2018.8647460.
  • [25] Larsen L.M.P., Checko A., Christiansen H.L., 2019. A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Communications Surveys & Tutorials, vol. 21, no. 1, 146-172, Firstquarter 2019, doi: 10.1109/COMST.2018.2868805.
  • [26] Li Y., Aruma Baduge G.A., 2018. NOMA-Aided Cell-Free Massive MIMO Systems. IEEE Wireless Communications Letters, vol. 7, no. 6, 950-953, Dec. 2018, doi: 10.1109/LWC.2018.2841375.
  • [27] Liu W.C, Liang Y.C, Li Y.H. et al., 2018. Backscatter multiplicative multipleaccess systems: fundamental limits and practical design. IEEE Trans Wirel Commun, 17, 5713-5728.
  • [28] Mahmood N.H. et al., 2020. White Paper on Critical and Massive Machine Type Communication Towards 6G. ArXiv, arXiv/2004.14146v2.
  • [29] Navarro-Ortiz J., Romero-Diaz P., Sendra S., Ameigeiras P., Ramos-Munoz J.J., Lopez-Soler J.M., 2020. A Survey on 5G Usage Scenarios and Traffic Models. IEEE Communications Surveys & Tutorials, vol. 22, no. 2, 905-929, Second quarter 2020, doi: 10.1109/COMST.2020.2971781.
  • [30] NGIoT, 2019. Building a roadmap for the next generation internet of things. Research, innovation and implementation 2021-2027. Whitepaper, https://www.ngiot.eu/wp-content/uploads/sites/26/2019/09/NGIoT_scoping-paper.pdf.
  • [31] NGMN, 2021. 5G smart devices supporting network slicing. Whitepaper. NGMN, https://www.ngmn.org/wpcontent/uploads/201214_NGMN_5G_SmartDevicesSupportingNetworkSlicing.pdf.
  • [32] Okumura Y.K.Y., 2018. Field Experiments on 5G Ultra-Reliable Low-Latency Communication (URLLC). NTT Docomo Technical Journal, vol. 20, no. 1.
  • [33] Pokhrel S.R., Ding J., Park J., Park O.-S., Choi J., 2020. Towards Enabling Critical mMTC: A Review of URLLC Within mMTC. IEEE Access, vol. 8, 131796-131813, doi: 10.1109/ACCESS.2020.3010271.
  • [34] Popovski P., Trillingsgaard K.F., Simeone O., Durisi G., 2018. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access, vol. 6, 55765-55779, 2018, doi: 10.1109/ACCESS.2018.2872781.
  • [35] Pycom, FiPy, https://pycom.io/product/fipy/.
  • [36] Qian L.P., Feng A., Huang Y., Wu Y., Ji B., Shi Z., 2019. Optimal SIC Ordering and Computation Resource Allocation in MEC-Aware NOMA NB-IoT Networks. IEEE Internet of Things Journal, vol. 6, no. 2, 2806-2816, April 2019, doi: 10.1109/JIOT.2018.2875046.
  • [37] Randrianantenaina I., Kaneko M., Dahrouj H., ElSawy H., Alouini M.-S., 2020. Interference Management in NOMA-Based Fog-Radio Access Networks via Scheduling and Power Allocation. IEEE Transactions on Communications, vol. 68, no. 8, 5056-5071, Aug. 2020, doi: 10.1109/TCOMM.2020.2988564.
  • [38] Rezaei F., Heidarpour A.R., Tellambura C., Tadaion A., 2020. Underlaid Spectrum Sharing for Cell-Free Massive MIMO-NOMA. IEEE Communications Letters, vol. 24, no. 4, 907-911, April 2020, doi: 10.1109/LCOMM.2020.2966195.
  • [39] Rezaei F., Tellambura C., Tadaion A.A., Heidarpour A.R., 2020. Rate Analysis of Cell-Free Massive MIMO-NOMA With Three Linear Precoders, in IEEE Transactions on Communications, vol. 68, no. 6, 3480-3494, June 2020, doi:10.1109/TCOMM.2020.2978189.
  • [40] Schiessl S., Skoglund M., Gross J., 2020. NOMA in the Uplink: Delay Analysis With Imperfect CSI and Finite-Length Coding. IEEE Transactions on Wireless Communications, vol. 19, no. 6, 3879-3893, June 2020, doi:10.1109/TWC.2020.2979114.
  • [41] Schulz P. et al., 2017. Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture. IEEE Commun. Mag., vol. 55, no. 2, 70-78, Feb 2017.
  • [42] Tian L., Yan C., Li W., Yuan Z., Cao W., Yuan Y., 2017. On uplink nonorthogonal multiple access for 5g: opportunities and challenges. China Communications, vol. 14, no. 12, 142-152, December 2017, doi: 10.1109/CC.2017.8246331.
  • [43] Xiao C., Zeng J., Liu B., Su X., Wang J., 2018. Cross-Layer Power Control for Uplink NOMA in IoT Applications with Statistical Delay Constraints. IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 1-7, doi: 10.1109/GLOCOM.2018.8647452.
  • [44] Yang Z., Ding Z., Fan P., Al-Dhahir N., 2016. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wireless Commun., vol. 15, no. 11, 7244-7257, Nov. 2016.
  • [45] You X., Wang CX., Huang J. et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64, 110301, https://doi.org/10.1007/s11432-020-2955-6.
  • [46] Zhang H., Qiu Y., Chu X., Long K., Leung V.C.M., 2017. Fog Radio Access Networks: Mobility Management, Interference Mitigation, and Resource Optimization. IEEE Wireless Communications, vol. 24, no. 6, 120-127, Dec. 2017, doi: 10.1109/MWC.2017.1700007.
  • [47] Zhang H., Qiu Y., Long K., G.K. Karagiannidis, Wang X., Nallanathan A., 2018. Resource Allocation in NOMA-Based Fog Radio Access Networks. IEEE Wireless Communications, vol. 25, no. 3, 110-115, JUNE 2018, doi: 10.1109/MWC.2018.1700326.
  • [48] Zhang J., Tao X., Wu H., Zhang N., Zhang X., 2020. Deep reinforcement learning for throughput improvement of the uplink grant-free NOMA system. IEEE Internet Things J., vol. 7, no. 7, 6369-6379.
  • [49] Zhang N., Wang J., Kang G., Liu Y., 2016. Uplink nonorthogonal multiple access in 5G systems. IEEE Commun. Lett., vol. 20, no. 3, 458-461, Mar. 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98ccdbdd-1a65-4c68-a788-335c086ba981
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.