PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mixtures of Phase-stabilized Ammonium Nitrate and Tetrazoles as New Gas-generating Agent Compositions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New gas-generating agents for air bags have been investigated. Ammonium nitrate does not give off harmful gases nor leave solid residues but goes through contraction and expansion during a series of phase transitions that cause structural damage within the material. In this study, potassium-nitrate-phase-stabilized ammonium nitrate (PSAN) was prepared by a nonhazardous aqueous method. Ammonium nitrate-based propellants have low burning rates. Tetrazoles were selected as they have a large heat of formation and can be used as fuel components for ammonium nitrate-based gas-generating agents. A number of different experiments were conducted on the novel tetrazole/PSAN mixtures in order to evaluate their application as gas-generating agents.
Rocznik
Strony
247--260
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Department of Applied Chemistry, School of Applied Sciences, National Defense Academy 1-10-20, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
autor
  • Test and Evaluation Command, Japan Ground Self-Defense Force, 481-27, Subashiri, Oyama, Shizuoka 410-1431, Japan
autor
  • The Kure Ammunition Storehouse and Maintenance Depot, Japan Maritime Self-Defense Force, Kirikushi, Etajima, Hiroshima 737-2111, Japan
Bibliografia
  • [1] Yosida T., Hasegawa T., Application of Reactive Chemicals − From Fireworks to Air Bags and Rocket, Tokyo Progress System LTD (in Japanese), Tokyo, 1996, pp. 12-18.
  • [2] Khandhadia P.S., Burns S.P., Thermally Stable Nonazide Automotive Airbag Propellants, US Patent 6 306 232 B1, 2001.
  • [3] Kubota N., Propellants and Explosives − Thermochemical Aspects of Combustion, WILEY-VCH, Weinheim, 2002, pp.53-54; ISBN 3-527-30210-7.
  • [4] Burns S.P., Khandhadia P.S., Smokeless Gas Generant Compositions, US Patent 6 074 502, 2000.
  • [5] Sato E., Kubo D., Ikeda K., Gas-generating Agent Composition and Gas Generator Employing the Same, US Patent 6 958 100 B2, 2005.
  • [6] Harada T., Ammonium Nitrate Based Gas Generating Composition (in Japanese), Explosion, 2003, 13(3), 128-133.
  • [7] Katsuda N., Yabuta M., Wu J., Inflator for an Air Bag, US Patent 6 854 395 B2, 2005.
  • [8] Oommen C., Jain S.R., Ammonium Nitrate: a Promising Rocket Propellant Oxidizer, J. Hazard. Mater., 1999, A67, 253-281.
  • [9] Kim J., Preparation of Phase Stabilized Ammonium Nitrate (PSAN) by a Salting Out Process, J. Chem. Eng. Japan, 1997, 30(2), 336-338.
  • [10] Cady H.H., The Ammonium Nitrate − Potassium Nitrate System, Propellants Explos. Pyrotech., 1981, 6(2), 49-54.
  • [11] Wu H.B., Chan C.K., Effects of Potassium Nitrate on the Solid Phase Transitions of Ammonium Nitrate Particles, Atmos. Environ., 2008, 42(2), 313-322.
  • [12] Sudhakar A.O.R., Mathew S., Thermal Behaviour of CuO Doped Phase-stabilised Ammonium Nitrate, Thermochim. Acta, 2006, 451(1-2), 5-9.
  • [13] Mathew S., Eisenreich N., Engel W., Thermal Analysis Using X-ray Diffractometry for the Investigation of the Solid State Reaction of Ammonium Nitrate and Copper Oxide, Thermochim. Acta, 1995, 269/270, 475-489.
  • [14] Mebrotra A.K., Markovich I.L., Potassium Fluoride Stabilized Ammonium Nitrate and Method of Producing Potassium Fluoride Stabilized Ammonium Nitrate, US Patent 5 098 683, 1992.
  • [15] Golovina N., Nechiporenko G., Nemtsev G., Zyuzin I., Manelis G.B., Lempert D., Ammonium Nitrate Phase State Stabilization with Small Amounts of Some Organic Compounds, Cent. Eur. J. Energ. Mater., 2009, 6(1), 45-56.
  • [16] Hasue K., Yoshitake K., The Mixture of the Phase Stabilized Ammonium Nitrate Containing Potassium Nitrate and 1HT as the New Gas Generant Composition, Sci. Technol. Energ. Mater., 2013, 74(3), 66-72.
  • [17] Hasue K., Akanuma T., Hodai H., Date S., Combustion Aspects of the Consolidated Mixtures of 5-Amino-1H-tetrazole and Potassium Perchlorate (in Japanese), Kayaku Gakkaishi (Sci. Technol. Energ. Mater.), 1999, 60(1), 31-37.
  • [18] Miyata Y., Kanou H., Date S., Hasue K., Combustion Characteristics of the Consolidated Mixtures of 5-Amino-1H-tetrazole and Sodium Perchlorate, Sci. Technol. Energ. Mater., 2005, 66(1), 233-239.
  • [19] Miyata Y., Date S., Hasue K., Effect of Additional Copper(II) Oxide on the Combustion of 5-Amino-1H-tetrazole and Lithium Perchlorate Mixtures (I) − Examination of the Burning Mechanism, Sci. Technol. Energ. Mater., 2007, 68(5), 125-130.
  • [20] Hasue K., Boonyarat P., Miyata Y., Takagi J., Combustion Characteristics of 5-Amino-1H-tetrazole and Strontium Nitrate Mixtures (in Japanese), Kayaku Gakkaishi (Sci. Technol. Energ. Mater.), 2001, 62(4), 168-174.
  • [21] Miyata Y., Date S., Hasue K., Combustion Mechanism of Consolidated Mixtures of 5-Amino-1H-tetrazole with Potassium Nitrate or Sodium Nitrate, Propellants Explos. Pyrotech., 2004, 29(4), 247-252.
  • [22] Iwakuma K., Miyata Y., Date S., Kohga M., Hasue K., A Study on the Combustion of 5,5’-Azobis-tetrazole aminoguanidine / Strontium Nitrate as a Gas Generating Agent, Sci. Technol. Energ. Mater., 2007, 68(4), 95-101.
  • [23] Onishi A., Tanaka H., Method of Tetrazole Amine Salts Having Improved Physical Properties for Generating Gas in Airbags, US Patent 5 439 251, 1995.
  • [24] Abe M., Ogura T., Miyata Y., Okamoto K., Date S., Kohga M., Hasue K., Evaluation of Gas Generating Ability of Some Tetrazoles and Copper(II) Oxide Mixtures Through Closed Vessel Test and Theoretical Calculation, Sci. Technol. Energ. Mater., 2008, 69(6), 183-190.
  • [25] Miyata Y., Abe M., Date S., Kohga M., Hasue K., Burning Characteristics of Aminoguanidinium 5,5’ -azobis-l H-tetrazolate/Ammonium Nitrate as Gas Generating Mixtures, Sci. Technol. Energ. Mater., 2008, 69(4), 117-123.
  • [26] Miyata Y., Hasue K., Effect of Initial Temperature and Pressure on the Burning Rate of AGAT/AN Mixtures, J. Energ. Mater., 2011, 29(1), 26-45.
  • [27] Miyata Y., Hasue K., Burning Characteristics of Aminoguanidinium 5,5’-Azobis-1H-tetrazolate /Ammonium Nitrate Mixture - Effects of Particle Size and Composition Ratio on Burning Rate, J. Energ. Mater., 2011, 29(4), 344-359.
  • [28] Yositake K., Ihoh K., Date S., Hasue K., Effect of Initial Temperature on the Burning Rate of Some Mixtures of Tetrazoles and Nitrates, Int. Pyrotechnics Seminar, Proc., 36th, Rotterdam, 2009, 287-301.
  • [29] Hasue K.,Yoshitake K., Equation of Burning Rate as a Function of Pressure and Temperature for 1H-Tetrazole/Ammonim Nitrate Mixtures, J. Energ. Mater., 2013, 31(4), 251-260.
  • [30] Hasue K., A Burning Rate Equation as a Function of Pressure and Temperature for a BTA·NH3/PSAN Mixture, J. Energ. Mater., 2014, 32(3), 199-206.
  • [31] Volk F., Bathelt H., User’s Manual for the ICT-Thermodynamic Code, Fraunhofer-Institut für Chemische Technologie, Pfinztal, 1998.
  • [32] Industrial Explosives Society Standard, Industrial Explosives Society, Tokyo, 1986, pp. 26-37.
  • [33] Khandhadia P.S., Burns S.P., Williams G.K., High Gas Yield Non-azide Gas Generants, US Patent 6 210 505 B1, 2001.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98c721b5-425d-4b40-ba7c-e653fabf8796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.