Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The shrinking of support in non-linear parabolic p-Laplacian equations with a positive initial condition 𝑢0 that decayed as ∣𝑥 ∣ →∞ was explored in the Cauchy problem. Proofs were provided for establishing exact local estimates for the boundary of the support of the solutions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240063
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
Bibliografia
- [1] G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium, Prikl. Mat. Meh. 16 (1952), 67–78.
- [2] A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Uspekhi Mat. Nauk 42 (1987), no. 2, 135–176, 287.
- [3] U. G. Abdullaev, On sharp local estimates for the support of solutions in problems for nonlinear parabolic equations, Sb. Math. 186 (1995), no. 8, 1085–1106, DOI: https://doi.org/10.1070/SM1995v186n08ABEH000058.
- [4] L. K. Martinson and K. B. Pavlov, The problem of the three-dimensional localization of thermal perturbations in the theory of non-linear heat conduction, USSR Comput. Math. Math. Phys. 12 (1972), no. 4, 261–268, DOI: https://doi.org/10.1016/0041-5553(72)90131-0.
- [5] A. S. Kalašnikov, The nature of the propagation of perturbations in problems of nonlinear heat conduction with absorption, Z. Vycisl. Mat i Mat. Fiz. 14 (1974), 891–905, 1075.
- [6] L. C. Evans and B. F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), no. 1, 153–166, DOI: http://projecteuclid.org/euclid.ijm/1256048324.
- [7] M. A. Herrero, On the behavior of the solutions of certain nonlinear parabolic problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. 75 (1981), no. 5, 1165–1183.
- [8] T. S. Khin and N. Su, Propagation property for nonlinear parabolic equations of p-Laplacian-type, Int. J. Math. Anal. 3 (2009), no. 9–12, 591–602.
- [9] D. Motreanu and E. Tornatore, Quasilinear Dirichlet problems with degenerated p-Laplacian and convection term, Mathematics 9 (2021), no. 2, 139.
- [10] P. Roselli and B. Sciunzi, A strong comparison principle for the p-Laplacian, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3217–3224, DOI: https://doi.org/10.1090/S0002-9939-07-08847-8.
- [11] J. Yin and C. Wang, Evolutionary weighted p-Laplacian with boundary degeneracy, J. Differential Equations 237 (2007), no. 2, 421–445, DOI: https://doi.org/10.1016/j.jde.2007.03.012.
- [12] U. G. Abdulla and R. Jeli, Evolution of interfaces for the nonlinear parabolic p-Laplacian-type reaction-diffusion equations. II. Fast diffusion vs. absorption, European J. Appl. Math. 31 (2020), no. 3, 385–406, DOI: https://doi.org/10.1017/s095679251900007x.
- [13] Y. Han and W. Gao, Extinction of solutions to a class of fast diffusion systems with nonlinear sources, Math. Methods Appl. Sci. 39 (2016), no. 6, 1325–1335, DOI: https://doi.org/10.1002/mma.3571.
- [14] E. Di Benedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98bbcede-a4c7-40f2-8b18-1b49db691479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.