PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The formation of Si-aluminide coating formed by plasma spraying and subsequent diffusion annealing on Ti-Al-7Nb intermetallic alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the article, the kinetic growth phenomena of aluminide coating formed by plasma spraying pure Al-Si powder and subsequent diffusion annealing on TiAl intermetallic alloy in inert atmosphere were investigated. Design/methodology/approach: The Al-Si powder was thermal sprayed (APS) on TiAl7Nb intermetallic alloy and annealed in Ar atmosphere during 5, 15, 30, 60, 240 and 480 min. The kinetic growth of the coating was observed using the scanning electron microscopy method (SEM), and chemical composition was analysed using the EDS method. Findings: The Kirkendall Effects pores formation, as well as titanium silicides on the grain boundary of TiAl3, was found. Research limitations/implications: The oxidation resistance of the developed coating might be analysed in further work. Practical implications: The developed coating might be used for the production of protective aluminide coatings on TiAl intermetallic alloys. Originality/value: The description of aluminide coating formation in a new technological process.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
autor
  • Pratt Whitney Rzeszow, ul. Hetmańska 120, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] R. Przeliorz, M. Goral, G. Moskal, L. Swadzba, The relationship between specific heat capacity and oxidation resistance of TiAl alloys, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 47-50.
  • [2] Z. Liu, G. Wang, Improvement of oxidation resistance of γ-TiAl At 800 and 900°C in air by TiAl2 coatings. Materials Science and Engineering A 397/1-2 (2005) 50-57. DOI: https://doi.org/10.1016/j.msea.2005.01.027
  • [3] M. Goral, G. Moskal, L. Swadzba, Gas phase aluminizing of TiAl intermetallics, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 443-446.
  • [4] C. Zhou, H. Xu, S. Gong, K.Y. Kim, A study of aluminide coatings on TiAl alloys by the pack cementation method, Material Science and Engineering A 341/1-2 (2003) 169-173. DOI: https://doi.org/10.1016/S0921-5093(02)00197-1
  • [5] Z.D. Xiang, S. Rose, P.K. Datta, Pack deposition of coherent aluminide coatings on -TiAl for enhancing its high temperature oxidation resistance, Surface and Coatings Technology 161/2-3 (2002) 286-292. DOI: https://doi.org/10.1016/S0257-8972(02)00469-3
  • [6] G. Moskal, M. Góral, L. Swadźba, B. Mendala, M. Hetmańczyk, B. Witala, Microstructural characterization of gas phase aluminized TiAlCrNb intermetallic alloy, Archives of Metallurgy and Materials 57/1 (2012) 253-259. DOI: https://doi.org/10.2478/v10172-012-0019-2
  • [7] M.Z. Alam, K.Y. Durgarao, M. Kumawat, S. Banumathy, Microstructure, oxidation and mechanical properties of a diffusion aluminide (Al3Ti) coated lamellar γ-TiAl alloy. Surface and Coatings Technology 380 (2019) 125071. DOI: https://doi.org/10.1016/j.surfcoat.2019.125071
  • [8] L.K. Wu, J.J. Wu, W.Y Wu., G.Y. Hou, H.Z. Cao, Y.P. Tang, H. Zhang, G.Q. Zheng, High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating, Corrosion Science 146 (2019) 18-27. DOI: https://doi.org/10.1016/j.corsci.2018.10.031
  • [9] L.K. Wu, W.Y. Wu, J.L. Song, G.Y. Hou, H.Z Cao, Y.P. Tang, G.Q. Zheng, Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film, Corrosion Science 140 (2018) 388-401. DOI: https://doi.org/10.1016/j.corsci.2018.05.025
  • [10] J. Małecka, The surface layer degradation of γ-TiAl phase based alloy, Journal of Achievements in Materials and Manufacturing Engineering 58/1 (2013) 31-37.
  • [11] A. Ebach-Stahl, M. Fröhlich, Lifetime study of sputtered PtAl coating on γ-TiAl with and without TBC topcoat at high temperatures. Surface and Coatings Technology 377 (2019) 124907. DOI: https://doi.org/10.1016/j.surfcoat.2019.124907
  • [12] H.-R. Jiang, Z.-L. Wang, W.-S. Ma, X.-R. Feng, Z.-Q. Dong, Z. Liang, L. Yong, Effects of Nb and Si on high temperature oxidation of TiAl, Transactions of Non-ferrous Metals Society of China 18/3 (2008) 512-517. DOI: https://doi.org/10.1016/S1003-6326(08)60090-4
  • [13] S.B Abu Suilik, K. Takeshita, H. Kitagawa, T. Tetsui, K. Hasezaki, Preparation and high temperature oxidation behavior of refractory disilicide coatings for γ-TiAl intermetallic compounds, Intermetallics 15/8 (2007) 1084-1090. DOI: https://doi.org/10.1016/j.intermet.2007.01.004
  • [14] Z.D. Xiang, S.R. Rose, P.K. Datta, Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process, Materials Chemistry and Physics 80/2 (2003) 482-489. DOI: https://doi.org/10.1016/S0254-0584(02)00551-5
  • [15] P.P. Bauer, N. Laska, R. Swadźba, Increasing the oxidation resistance of γ-TiAl by applying a magnetron sputtered aluminum and silicon based coating, Intermetallics 133 (2021) 107177. DOI: https://doi.org/10.1016/j.intermet.2021.107177
  • [16] H.P. Xiong, W. Mao, Y.H. Xie, W.L. Ma, Y.F. Chen, X.H. Li, J.P. Li, Y.Y. Cheng, Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance, Acta Materialia 52/9 (2004) 2605-2620. DOI: https://doi.org/10.1016/j.actamat.2004.02.008
  • [17] H.P. Xiong, W. Mao, Y.H. Xie, Y.Y. Cheng, X.H. Li, Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance, Materials Science and Engineering A 391/1-2 (2005) 10-18. DOI: https://doi.org/10.1016/j.msea.2004.05.026
  • [18] W. Liang, X.X. Ma, X.G. Zhao, F. Zhang, J.Y. Shi, J. Zhang, Oxidation kinetics of the pack siliconized TiAl-based alloy and microstructure evolution of the coating, Intermetallics 15/1 (2007) 1-8. DOI: https://doi.org/10.1016/j.intermet.2005.11.038
  • [19] A.R. Rastkar, Plasma enhanced paste aluminizing of Ti-45Al-2Nb-2Mn-1B with Al-Si alloys, Surface and Coatings Technology 283 (2015) 10-21. DOI: https://doi.org/10.1016/j.surfcoat.2015.10.036
  • [20] G. Moskal, D. Migas, B. Mendala, P. Kałamarz, M. Mikuśkiewicz, A. Iqbal, S. Jucha, M. Góral, The Si influence on the microstructure and oxidation resistance of Ti-Al slurry coatings on Ti-48Al-2Cr-2Nb alloy, Materials Research Bulletin 141 (2021) 111336. DOI: https://doi.org/10.1016/j.materresbull.2021.111336
  • [21] K. Bobzin, T. Brögelmann, C. Kalscheuer, T. Liang, Al-Si and Al-Si-Y coatings deposited by HS-PVD for the oxidation protection of γ-TiAl, Surface and Coatings Technology 350 (2018) 587-595. DOI: https://doi.org/10.1016/j.surfcoat.2018.06.074
  • [22] Q. Wang, W.Y. Wu, M.Y. Jiang, F.H. Cao, H.X. Wu, D.B. Sun, H.Y. Yu, L.K. Wu, Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating, Surface and Coatings Technology 381 (2020) 125126. DOI: https://doi.org/10.1016/j.surfcoat.2019.125126
  • [23] G. Moskal, M. Goral, L. Swadzba, B. Mendala, G. Jarczyk, Characterization of TiAlSi coating deposited by Arc-PVD method on TiAlCrNb intermetallic base alloy, Defect and Diffusion Forum 237-240 (2005) 1153-1156. DOI: https://doi.org/10.4028/www.scientific.net/DDF.237- 240.1153
  • [24] G. Moskal, B. Witala, A. Rozmyslowska, Influence of heat treatment on microstructure of slurry aluminide coatings type TiAlSi obtained on TiAlCrNb alloy, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 204-210.
  • [25] M. Goral, G. Moskal, L. Swadzba, T. Tetsui, Si-modified aluminide coating deposited on TiAlNb alloy by slurry method by slurry method, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 75-78.
  • [26] M. Goral, G. Moskal, L. Swadzba, The influence of Si on structure of aluminide coatings deposited on TiAl alloy, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 463-466.
  • [27] J.Q. Wang, L.Y. Kong, T.F. Li, T.Y. Xiong, High temperature oxidation behaviour of Ti(Al,Si)3 diffusion coating on γ-TiAl by cold spray. Transactions of Nonferrous Metals Society of China 26/4 (2016) 1155- 1162. DOI: https://doi.org/10.1016/S1003-6326(16)64214-0
  • [28] J. Sienkiewicz, S. Kuroda, H. Murakami, H. Araki, M. Giżyński, K.J. Kurzydłowski, Fabrication and Oxidation Resistance of TiAl Matrix Coatings Reinforced with Silicide Precipitates Produced by Heat Treatment of Warm Sprayed Coatings, Journal of Thermal Spray Technology 27 (2018) 1165-1176. DOI: https://doi.org/10.1007/s11666-018-0751-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98bb4cc7-75b7-43ff-b8d4-298f8d869b23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.