Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study deals with reliability analysis of strip foundation on spatially variable c - ϕ soil. The spatial variability of soil strength parameters, namely cohesion c and friction angle ϕ is modelled using anisotropic uncorrelated random fields, generated with the Fourier series method. Random finite element limit analysis (RFELA) providing a rigorous lower and upper bound for bearing capacity for individual Monte-Carlo simulations is employed. Additional use of adaptive meshing refinement algorithm leads to a significant reduction of the relative difference between statistical moments of obtained lower and upper bound results. The influence of the horizontal and vertical scales of fluctuation and foundation depths on the mean and standard deviation of the obtained bound moments is investigated. Additionally, the rigorousness of the mean and standard deviation of both considered bounds estimation is checked. As a result of the analysis, a novel approach based on a mixed distribution that combines lower and upper bound moments is introduced. As shown, this approach offers significant benefits by providing conservative and relatively precise measures of reliability which can be obtained in reasonable computation time. The proposed method seems to be adequate for practical engineering reliability analysis of foundation bearing capacity and other limits states problems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--35
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
- [1] Ali, A., Lyamin, A. V., Huang, J., Li, J. H., Cassidy, M. J., & Sloan, S. W. (2017). Probabilistic stability assessment using adaptive limit analysis and random fields. Acta Geotechnica, 12(4), 937–948. https://doi.org/10.1007/s11440-016-0505-1
- [2] Ali, A., Lyamin, A. V., Huang, J., Sloan, S. W., & Cassidy, M. (2016). Effect of Spatial Correlation Length on the Bearing Capacity of an Eccentrically Loaded Strip Footing. In H. W. Huang, J. Li, J. Zhang, & Chen J.B. (Eds.), APSSRA.
- [3] Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263–277. https://doi.org/10.1016/S0266-8920(01)00019-4
- [4] Chen, X.-J., Fu, Y., & Liu, Y. (2022). Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay. Engineering Geology, 304, 106677. https://doi.org/10.1016/j.enggeo.2022.106677
- [5] Cheng, P., Guo, J., Yao, K., & Chen, X. (2023). Numerical investigation on pullout capacity of helical piles under combined loading in spatially random clay. Marine Georesources & Geotechnology, 41(10), 1118–1131. https://doi.org/10.1080/1064119X.2022.2120843
- [6] Ching, J., Wu, T. J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers, 9(6), 1597–1608. https://doi.org/10.1016/j.gsf.2017.11.008
- [7] Chwała, M., Komatsu, G., & Haruyama, J. (2024). Structural stability of lunar lava tubes with consideration of variable cross-section geometry. Icarus, 411. https://doi.org/10.1016/j.icarus.2023.115928
- [8] Chwała, M., & Puła, W. (2020). Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters. PLoS One, 15(4), e0231992.
- [9] Cho, S. E., & Park, H. C. (2010). Effect of spatial variability of cross‐correlated soil properties on bearing capacity of strip footing. International Journal for Numerical and Analytical Methods in Geomechanics, 34(1), 1-26.
- [10] Ciria Suárez, H. (2004). Computation of Upper and Lower Bounds in Limit Analysis using Second-order Cone Programming and Mesh Adaptivity [Master of Science]. Massachusetts Institute of Technology.
- [11] Dobrzanski, J., & Kawa, M. (2021). Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil. Studia Geotechnica et Mechanica, 43(4), 425–437. https://doi.org/10.2478/sgem-2021-0035
- [12] EN-1990, Basis of Structural Design. (2002).
- [13] Engwirda, D. (2014). Locally Optimal Delaunay-refinement and Optimisation-based Mesh Generation.
- [14] Fenton, G. A., & Griffiths, D. V. (2008). Risk assessment in geotechnical engineering. John Wiley & Sons.
- [15] Griffiths, D. V., & Fenton, G. A. (1993). Seepage beneath water retaining structures founded on spatially random soil. Géotechnique, 43(4), 577–587. https://doi.org/10.1680/geot.1993.43.4.577
- [16] Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic Slope Stability Analysis by Finite Elements. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 507–518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
- [17] Griffiths, D. V., Huang, J., & Fenton, G. A. (2009). Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1367–1378. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099
- [18] Hicks, M. A., & Samy, K. (2002). Influence of heterogeneity on undrained clay slope stability. Quarterly Journal of Engineering Geology and Hydrogeology, 35(1), 41–49. https://doi.org/10.1144/qjegh.35.1.41
- [19] Huang, L., Cheng, Y. M., Li, L., & Yu, S. (2021). Reliability and failure mechanism of a slope with non-stationarity and rotated transverse anisotropy in undrained soil strength. Computers and Geotechnics, 132. https://doi.org/10.1016/j.compgeo.2020.103970
- [20] ISO 2394:2015, General principles on reliability for structures. (2015).
- [21] J. L. Doob. (1990). Stochastic processes. Wiley-Interscience.
- [22] Jerez D. J. & Chwała M. & Jensen H. A. & Beer M. (2024). Optimal borehole placement for the design of rectangular shallow foundation systems under undrained soil conditions: A stochastic framework. Reliability Engineering & System Safety. doi.org/10.1016/j.ress.2023.109771.
- [23] Jha, S. K., & Ching, J. (2013). Simulating Spatial Averages of Stationary Random Field Using the Fourier Series Method. Journal of Engineering Mechanics, 139(5), 594–605. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517
- [24] Kawa, M. (2023). Zastosowania pól losowych do opisu anizotropowych ośrodków gruntowych w wybranych zagadnieniach geoinżynierii. Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).
- [25] Kawa, M., Baginska, I., & Wyjadlowski, M. (2019). Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of civil and mechanical engineering, 19, 598-613.
- [26] Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–φ soil. Acta Geotechnica, 15(6), 1453–1466. https://doi.org/10.1007/s11440-019-00853-3
- [27] Kawa, M., Puła, W., & Truty, A. (2021). Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) model. Engineering Structures, 232. https://doi.org/10.1016/j.engstruct.2021.111869
- [28] Krabbenhoft, K., Lyamin, A. V., Hjiaj, M., & Sloan, S. W. (2005). A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering, 63(7), 1069–1088. https://doi.org/10.1002/nme.1314
- [29] Kumar, V., Burman, A., Portelinha, F. H. M., Kumar, M., Burman, A., Portelinha, F. H. M., & Das, G. (2023). Influence of Variation of Soil Properties in Bearing Capacity and Settlement Analysis of a Strip Footing Using Random Finite Element Method. Civil Engineering Infrastructures Journal. https://doi.org/DOI:10.22059/CEIJ.2023.360871.1930
- [30] Liu, Y., Chen, X., & Hu, M. (2022). Three-dimensional large deformation modeling of landslides in spatially variable and strain-softening soils subjected to seismic loads. Canadian Geotechnical Journal, 60(4), 426-437.
- [31] Liu, X., Wang, Y., & Li, D. Q. (2019). Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Computers and Geotechnics, 111, 301–312. https://doi.org/10.1016/j.compgeo.2019.03.022
- [32] Lyamin, A. V., & Sloan, S. W. (2002a). Lower bound limit analysis using non‐linear programming. International Journal for Numerical Methods in Engineering, 55(5), 573–611. https://doi.org/10.1002/nme.511
- [33] Lyamin, A. V., & Sloan, S. W. (2002b). Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181–216. https://doi.org/10.1002/nag.198
- [34] Lyamin, A. V., & Sloan, S. W. (2003). Mesh generation for lower bound limit analysis. Advances in Engineering Software, 34(6), 321–338. https://doi.org/10.1016/S0965-9978(03)00032-2
- [35] Makrodimopoulos, A., & Martin, C. M. (2008). Upper bound limit analysis using discontinuous quadratic displacement fields. Communications in Numerical Methods in Engineering, 24(11), 911–927. https://doi.org/10.1002/cnm.998
- [36] Pieczyńska-Kozłowska, J. M., Puła, W., Griffiths, D. V., & Fenton, G. A. (2015). Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method. Computers and Geotechnics, 67, 229–238. https://doi.org/10.1016/j.compgeo.2015.02.013
- [37] Podlich, N. C. (2018). The Development of Efficient Algorithms for Large-Scale Finite Element Limit Analysis [Doctor of Philosophy]. University of Newcastle.
- [38] Podlich, N. C., Lyamin, A. V., & Sloan, S. W. (2014). A Comparison of Conic Programming Software for Finite Element Limit Analysis. Applied Mechanics and Materials, 553, 439–444. https://doi.org/10.4028/www.scientific.net/AMM.553.439
- [39] Puła, W., Szabowicz, H., & Kawa, M. (2022). Efficient and conservative estimation of failure probability of strip footing on spatially variable soil using random finite element limit analysis. In J. Huang, D. V. , Griffiths, S.-H. Jiang, A. Giacomini, & R. Kelly (Eds.), 8th International Symposiumon Geotechnical Safety and Risk (ISGSR) (pp. 303–308). https://doi.org/10.3850/978-981-18-5182-7_04-007-cd
- [40] Sert, S., Luo, Z., Xiao, J., Gong, W., & Juang, C. H. (2016). Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics, 75, 182–191. https://doi.org/10.1016/j.compgeo.2016.02.004
- [41] Simões, J. T., Neves, L. C., Antão, A. N., & Guerra, N. M. C. (2014). Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analyses. International Journal of Computational Methods, 11(2). https://doi.org/10.1142/S0219876213420085
- [42] Zaskórski, L., & Puła, W. (2016). Calibration of characteristic values of soil properties using the random finite element method. Archives of Civil and Mechanical Engineering, 16(1), 112–124. https://doi.org/10.1016/j.acme.2015.09.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98bb3de9-3175-4b51-aee5-6e046dbfa96d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.