PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wavelet Neural Network based adaptive event triggered control scheme for a class of nonlinear systems with uncertain dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an adaptive event-triggered control approach for a class of unknown dynamics networked stringent feedback nonlinear systems is developed. The approximation of system uncertainties by a wavelet neural network (WNN) frequently presents a significant obstacle in the development of a precise control strategy. In order to guarantee the specified system performance and Zeno-free behaviour of networked control systems, we build an adaptive event triggering mechanism that is enhanced with WNN and outfitted with predetermined event triggering circumstances. In order to ensure the uniform ultimate boundedness (UUB) of all closed loop signals, the controller works to reduce the amount of information exchanged between the sensor and the controller. We offer numerical simulations to demonstrate the efficiency of the suggested plan.
Twórcy
  • Medi-Caps University, Indore
  • Medi-Caps University, Indore
autor
  • Medi-Caps University, Indore
  • Medi-Caps University, Indore
Bibliografia
  • [1] X. -M. Zhang et al., "Networked control systems: a survey of trends and techniques," in IEEE/CAA Journal of AutomaticaSinica, vol. 7, no. 1, pp. 1-17, 2020.
  • [2] M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido and K. H. Johansson, "Distributed event-triggered control with network delays and packet losses," 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, pp. 1-6, 2012.
  • [3] Y. Batmani,” On the Design of Event-Triggered Suboptimal Controllers for Nonlinear Systems”, Asian Journal of Control, vol. 20, issue 3, pp. 1303-1311, 2018.
  • [4] J. Cai, R. Yu, Q. Yan, C. Mei and L. Shen, "Event-Triggered Control for Strict-Feedback Nonlinear Systems with External Disturbances," in IEEE Access, vol. 7, pp. 38390-38396, 2019,
  • [5] J. Huang, W. Wang, C. Wen and G. Li, "Adaptive Event-Triggered Control of Nonlinear Systems With Controller and Parameter Estimator Triggering," in IEEE Transactions on Automatic Control, vol. 65, no. 1, pp. 318-324, Jan. 2020,
  • [6] H. Lu, Y. Deng and W. Zhou, "Adaptive Event-Triggered H∞ Control for Networked Control Systems With Actuator Saturation and Random Nonlinearities," in IEEE Access, vol. 8, pp. 220723-220733, 2020.
  • [7] S. Al Issa and I. Kar, “ Event-triggered Adaptive Backstepping Control of Nonlinear Uncertain Systems with Input Delay” IFAC-Papers Online, vol. 55, Issue 1, pp. 667-672 , 2022.
  • [8] Y. Xie, Q. Ma and S. Xu, "Adaptive Event-Triggered Finite-Time Control for Uncertain Time Delay Nonlinear System," in IEEE Transactions on Cybernetics, vol. 53, no. 9, pp. 5928-5937, 2023.
  • [9] L. Chu and Y. Liu, “Adaptive event-triggered control for nonlinear systems with time-varying parameter uncertainties”, International Journal of Robust and Nonlinear Control, vol. 34, issue 3, pp. 2094-2108, 2024.
  • [10] J. Blanco Rico, and B. Mohammed Al-Hadithi .” Event-triggered Controlled Charger for Lithium Battery Packs”, IEEE Latin America Transactions, 22(5), 435-441. 2024.
  • [11] Y. Hua and T. Zhang, "Adaptive Neural Event-Triggered Control of MIMO Pure-Feedback Systems with Asymmetric Output Constraints and Unmodeled Dynamics," in IEEE Access, vol. 8, pp. 37684-37696, 2020,
  • [12] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE Transactions on Neural Networks, Vol. 3, no. 6, pp.889-898, November 1992.
  • [13] J. Zhang, G. G. Walter, Y. Miao, and. W. Lee, “Wavelet neural networks for function learning,” IEEE Transactions on Signal Processing, Vol. 43, no. 6, pp.1485-1497, June 1995.
  • [14] B. Delyon, A. Juditsky, and A. Benveniste, “Accuracy analysis for wavelet approximations,” IEEE Transactions on Neural Networks, Vol. 6, no. 2, pp.332-348 March 1995.
  • [15] S.A. Billings and H.L.Wei, “A New Class of Wavelet Networks for Nonlinear System Identification,” IEEE Transactions on Neural Networks, vol. 16, pp.862-874, 2005.
  • [16] M.Zekri, S.Sadri, F.Sheikholeslam, “Adaptive Wavelet Controller Design for Non Linear Systems”, Fuzzy Sets and Systems, vol. 159, pp.2668-2695, 2008.
  • [17] Y. Fang, L. Liu, J. Li.& Y. Xu,” Decoupling control based on terminal sliding mode and wavelet network for the speed and tension system of reversible cold strip rolling mill”. International Journal of Control, vol. 88, no. 8, pp. 1630-1646, 2015.
  • [18] M. Ameziane., K. Slaoui, and I. Boumhidi,. “Adaptive wavelet network sliding mode control for a photovoltaic-pumping system”. Australian Journal of Electrical and Electronics Engineering, vol. 13 no. 1, pp. 24-31, 2016.
  • [19] F. Nafa, A. Boudouda, and B. Smaani, “Adaptive Wavelets Sliding Mode Control for a Class of Second Order Underactuated Mechanical Systems”. Acta Polytechnica, vol. 61, no. 2, pp. 350-363. 2021.
  • [20] K. J. Astrom and B. Wittenmark, “Adaptive control”. New York: Addison Wesley, 1995.
  • [21] H.K. Khalil, “Nonlinear systems”. Upper Saddle River, NJ Prentice Hall, 2002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98baeb7c-6940-43f2-9cbc-260b4e420609
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.