PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure risk analysis in the collective water supply systems in crisis situations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Risk is a basic category to estimate water supply system safety. The first step in risk assessment is to identify the threats and their possible consequences. One of methods for risk assessment is the method using the socalled risk graphs. It relies on the preliminary analysis of such risk factors as: the frequency of threat occurrence – F, the duration of the risk exposure – E, the size of the possible consequences – C and a degree of protection – O, that is inversely proportional to the mentioned measures of risk. The route along the branches of the risk graph should be started from the determination of the initiating/peak event which is the undesirable event (e.g. secondary water contamination in water-pipe network). The expanded risk graph presented in the work differs from the standard (commonly used) graph because it takes into consideration all combinations of the particular risk factors.
Rocznik
Strony
129--136
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology, Rzeszow, Poland
  • Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • [1] Aven, T. (2010). Conceptual framework for risk assessment and risk management. Summer Safety &Reliability Seminars. Journal of Polish Safety and Reliability Association 1, 15-27.
  • [2] Barnert, T. (2011). Determining required safety integrity level. Summer Safety & Reliability Seminars. Journal of Polish Safety and Reliability Association 1, 35-44.
  • [3] Heinz, P.B. (2012). Safety integrity levels – Aprroach, methods, examples. Educational Course: 6th Summer Safety & Reliability Seminars, Gdańsk-Sopot, 02.09.-07.09.2012.
  • [4] Hipel, K. W., Kilgour, D.M., Zhao, N.Z. (2003). Risk analysis of the Walkerton drinking water crisis. Canadian Water Resources Journal 3, 395397.
  • [5] Hrudey, S.E. & Hrudey, E.J. (2004). Safe drinking water. Lessons from recent outbreaks in affluent nations. IWA Publishing, New York.
  • [6] International Electrotechnical Commission (2006) IEC 61025, Ed. 2.0, Fault Tree Analysis (FTA).
  • [7] International Electrotechnical Comission (2010). IEC 61508 – Functional safety of electrical/electronic/programmable electronic safety related systems, Geneva, first version issued 1999.
  • [8] Mays, L.W. (2005). The role of risk analysis in water resources engineering. Department of Civil and Environmental Engineering. Arizona State University, Arizona 2005
  • [9] Merkel, W. & Castell-Exner, C. (2010). Managing risk under normal operation and in crisis situations. Water Utility Management International 9, 19-22.
  • [10] Michaud, D. & Apostolakis, G.E. (2006). Methodology for ranking elements of watersupply networks. Journal of Infrastructure Systems 12(4), 230-242.
  • [11] PN-EN-1050. Zasady oceny ryzyka, 1999.
  • [12] PN-IEC 60300-3-9. Analiza ryzyka w systemach technicznych, 1999.
  • [13] Rak, J. (2005). Ocena bezpieczeństwa funkcjonowania SZW metodą grafów ryzyka. Komitet InŜynierii Środowiska Pan, Konferencja: XII Ogólnopolska Konferencja N-T z cyklu "Problemy gospodarki wodno-ściekowej w regionach rolniczo-przemysłowych" Komitet inŜynierii Środowiska PAN. BiałowieŜa 0607.06.2005, t. 30, 237-246
  • [14] Rak, J. (2005). Podstawy bezpieczeństwa systemów zaopatrzenia w wodę. Wydawnictwo PAN - Komitet InŜynierii Środowiska t. 28.
  • [15] Rak, J. (2009). Selected problems of water supply safety. Environmental Protection Engineering 35, 29-35.
  • [16] Rak, J. & Pietrucha, K. (2008). Some factors of crisis management in water supply system. Environment Protection Engineering 34(2), 5765.
  • [17] Rak, J. & Tchórzewska-Cieślak, B. (2006) Rozwinięcie metod oceny ryzyka SZW za pomocą grafów. Wydawnictwo Politechniki Krakowskiej. Czasopismo Techniczne, Seria: Środowisko 2, 179-188.
  • [18] Tchórzewska-Cieślak, B. (2010). Failure risk analysis in the water distribution system. Summer Safety & Reliability Seminars. Journal of Polish Safety and Reliability Association 1, 247-255.
  • [19] Tchórzewska-Cieślak, B. (2011). Metody analizy i oceny ryzyka awarii podsystemu dystrybucji wody. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów.
  • [20] Tchórzewska-Cieślak, B. (2009). Water supply system reliability management. Environmental Protection Engineering 35, 29-35.
  • [21] United States Environmental Protection Agency (U.S. EPA.). Decision-Support tools for predicting the performance of water distribution and wastewater collection systems. Washington D.C.: National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency. 2006.
  • [22] Water Framework Directive 2000/60/WE.
  • [23] WHO (2002). Water Safety Plans (Revised Draft), Report publication WHO/SDE/WSH/02.09 (World Health Organization, Geneva.
  • [24] WHO (2003). Guidelines for Drinking Water Quality, 3rd edn (draft) (World Health Organization, Geneva).
  • [25] World Health Organization, Water Safety Plans. Managing drinking-water quality from catchment to consumer, Water, Sanitation and Health. Protection and the Human Environment World Health Organization, Geneva, 2005.
  • [26] Zio, E. (2009). Computational Methods for Reliability and Risk Analysis. World Scientific Publishing Co., London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98bad067-39b7-4564-9d47-fdcb53b55cc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.