PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

X-ray diffraction and thermo gravimetric analysis of surface modified areca sheath fibre epoxy composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Focus of the current study is to shed more light on thermal behaviour of composites made up of areca sheath fibres. The XRD analysis revealed that crystallinity index and crystallinity percentage increased with different treatments, as it leads to better interaction of fibre and resin. The crystallinity percentage of alkali treated fibre and benzoyl peroxide treated fibre increased by 5.87 and 8.44% respectively compared to untreated fibre. This was further evident in thermal studies which proved better thermal stability in benzoyl peroxide treated fibre composite.
Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Alva’s Institute of Engineering & Technology, MIJAR-574225, Karnataka, India
  • Department of Chemistry, Alva’s Institute of Engineering & Technology, MIJAR-574225, Karnataka, India
Bibliografia
  • 1. Jayanarayanan K, Thomas S, Joseph K. Morphology, static and dynamic mechanical properties of in situ microfibrillar composites based on polypropylene/poly(ethylene terephthalate) blends. Compos Part A Appl Sci Manuf. 2008;39(2):164–75.
  • 2. Benin SR, Bright R. A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.06.259
  • 3. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int J Polym Sci. 2015;2015.
  • 4. Sonnier R, Taguet A, Ferry L, Lopez-Cuesta J-M. Towards Bio-based Flame Retardant Polymers. Towar Bio-based Flame Retard Polym. 2018;33–72. http://link.springer.com/10.1007/978-3-319-67083-6
  • 5. Loganathan TM, Sultan MTH, Jawaid M, Md Shah AU, Ahsan Q, Mariapan M, et al. Physical, Thermal and Mechanical Properties of Areca Fibre Reinforced Polymer Composites - An Overview. J Bionic Eng. 2020 Jan;17(1):185–205.
  • 6. Santulli C, Sarasini F, Tirillò J, Valente T, Valente M, Caruso AP, et al. Mechanical behaviour of jute cloth/wool felts hybrid laminates. Mater Des. 2013;50:309–21. http://dx.doi.org/10.1016/j.matdes.2013.02.079
  • 7. Senthilkumar K, Saba N, Rajini N, Chandrasekar M, Jawaid M, Siengchin S, et al. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr Build Mater [Internet]. 2018;174:713–29. https://doi.org/10.1016/j.conbuildmat.2018.04.143
  • 8. Jariwala H, Jain P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinf Plast Compos. 2019;38(10):441–53.
  • 9. Dinakaran K, Ramesh H, Joseph AD, Murugan R, Jothi S. Development and characterization of areca fiber reinforced polymer composite. Mater Today Proc. 2019;18:934–40. https://doi.org/10.1016/j.matpr.2019.06.528
  • 10. Nayak SY, Sultan MTH, Shenoy SB, Kini CR, Samant R, Shah AUM, et al. Potential of Natural Fibers in Composites for Ballistic Applications–A Review. J Nat Fibers. 2020;00(00):1–11. https://doi.org/10.1080/15440478.2020.1787919
  • 11. Yusriah L, Sapuan SM, Zainudin ES, Mariatti M. Exploring the Potential of Betel Nut Husk Fiber as Reinforcement in Polymer Composites: Effect of Fiber Maturity. Procedia Chem. 2012;4:87–94. http://dx.doi.org/10.1016/j.proche.2012.06.013
  • 12. Ashok RB, Srinivasa C V., Basavaraju B. A review on the mechanical properties of areca fiber reinforced composites. Sci Technol Mater. 2018.
  • 13. Munshi MR, Gafur MA. Effect of Fiber Ratio on Mechanical, Thermal and Electrical Properties of Areca Sheath-Bamboo Fiber Reinforced Hybrid Polyester Composites. Adv Mater Process Technol [Internet]. 2022 Oct 2;8(4):3975–89. https://doi.org/10.1080/2374068X.2022.2036501
  • 14. Binoj JS, Raj RE, Sreenivasan VS, Thusnavis GR. Morphological, Physical, Mechanical, Chemical and Thermal Characterization of Sustainable Indian Areca Fruit Husk Fibers (Areca Catechu L.) as Potential Alternate for Hazardous Synthetic Fibers. J Bionic Eng. 2016;13(1):156–65. https://link.springer.com/article/10.1016/S1672-6529(14)60170-0
  • 15. Gokul P V., Singh P, Singh VP, Sawarkar AN. Thermal behavior and kinetics of pyrolysis of areca nut husk. Energy Sources, Part A Recover Util Environ Eff. 2019 Dec;41(23):2906–16.
  • 16. Kamath SS, Sampathkumar D, Bennehalli B. A review on natural areca fibre reinforced polymer composite materials. Ciência Tecnol dos Mater. 2017;29(3):106–28. https://doi.org/10.1016/j.ctmat.2017.10.001
  • 17. Das S, Chaudhuri A, Singha AK. Fabrication, microstructural and mechanical properties of arecanut leaf sheath fibre reinforced polyester resin composites. J Text Inst. 2021;113(9):1–8.
  • 18. Kamath SS, Sunil B, Bennehalli B. Tribological studies of epoxy composites using surface modified areca sheath fibres. Mater Today Proc. 2021;45:4763–7. https://doi.org/10.1016/j.matpr.2021.01.193
  • 19. Vigneshwaran S, Uthayakumar M, Arumugaprabu V. Potential use of industrial waste-red mud in developing hybrid composites: A waste management approach. J Clean Prod, 2020;276:124278. https://doi.org/10.1016/j.jclepro.2020.124278
  • 20. Kamath SS, Bennehalli B. Surface Modification of Areca Fibre by Benzoyl Peroxide and Mechanical Behaviour of Areca-Epoxy Composites, Mat. Sci. Res. India . 2021;18(1):0–7.
  • 21. K. Kaushik V, Kumar A, Kalia S. Effect of Mercerization and Benzoyl Peroxide Treatment on Morphology, Thermal Stability and Crystallinity of Sisal Fibers. Int J Text Sci. 2013;1(6):101–5.
  • 22. Manimaran P, Saravanan SP, Sanjay MR, Siengchin S, Jawaid M, Khan A. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polimer composite structures. J Mater Res Technol, 2019;8(2):1952–63. https://doi.org/10.1016/j.jmrt.2018.12.015
  • 23. Palanivel A, Veerabathiran A, Duruvasalu R, Iyyanar S, Velumayil R. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite. Polimeros. 2017;27(4):309–19.
  • 24. Sundarraj AA, Ranganathan TV. Extraction and characterization of cellulose from jackfruit (Artocarpus integer) PEEL. J Exp Biol Agric Sci. 2018;6(2):414–24.
  • 25. Siakeng R, Jawaid M, Ariffin H, Sapuan SM. Thermal properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conf Ser Mater Sci Eng. 2018;368(1).
  • 26. Teixeira LA, Vilson Dalla Junior L, Luz SM. Chemical treatment of curaua fibres and its effect on the mechanical performance of fibre/polyester composites. Plast Rubber Compos. 2021;50(4):189–99. https://doi.org/10.1080/14658011.2020.1862978
  • 27. Chin SC, Tee KF, Tong FS, Ong HR, Gimbun J. Thermal and mechanical properties of bamboo fiber reinforced composites. Mater Today Commun. 2020;23(December 2019):100876. https://doi.org/10.1016/j.mtcomm.2019.100876
  • 28. Shanmugasundaram N, Rajendran I, Ramkumar T. Static, dynamic mechanical and thermal properties of untreated and alkali treated mulberry fiber reinforced poliester composites. Polym Compos. 2018;39:E1908-19.
  • 29. Lavoratti A, Romanzini D, Amico SC, Zattera AJ. Influence of fibre treatment on the characteristics of buriti and ramie polyester composites. Polym Polym Compos. 2017;25(4):247-55.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98ba0399-7ea6-41d7-a406-889267d4ffe0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.