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Abstract. This paper deals with the determination of an initial condition in the degenerate
two-dimensional parabolic equation

∂tu− div (a(x, y)I2∇u) = f, (x, y) ∈ Ω, t ∈ (0, T ),

where Ω is an open, bounded subset of R2, a ∈ C1(Ω̄) with a > 0 everywhere, and
f ∈ L2(Ω× (0, T )), with initial and boundary conditions

u(x, y, 0) = u0(x, y), u |∂Ω= 0,

from final observations. This inverse problem is formulated as a minimization problem using
the output least squares approach with the Tikhonov regularization. To show the convergence
of the descent method, we prove the Lipschitz continuity of the gradient of the Tikhonov
functional. Also we present some numerical experiments to show the performance and stability
of the proposed approach.
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1. INTRODUCTION

In many modern applications, it is necessary to estimate the initial state of a system
(typically a system governed by a partial derivative equation (PDE) of evolution) from
the partial knowledge of the system in a limited time interval.

This type of identification problem is applied in many areas. In medicine, the
thermoacoustic tomography tumor detection can be reduced to the initial data re-
construction problems [7]. In cosmology, to have a good understanding of the cosmos
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formation or its evolution, the estimation of initial conditions is necessary [6]. Other
application where the initial identification requirement is an essential procedure is the
data assimilation [8], it is used for the numerical weather forecast, ocean circulation,
and environmental prediction.

There are several approaches to identify the initial condition for non-degenerate
parabolic heat transfer, for example, [9] apply genetic algorithm with epidemic operator,
and [4] apply Tikhonov regularization.

Until the writing of these lines, all the works that deal with the degenerate problems
are made for the one-dimensional case. Among the most recent works we can mention
the work done by [10] to identify the initial condition of degenerate one-dimensional
parabolic problem.

This work is the continuation of [1–3], in which we identify the initial condition and
we study numerically the null controllability of a degenerate/singular parabolic problem
in one-dimensional case. In [3], we solve an inverse backward problem for degenerate
hyperbolic equation from final observations, and to reduce the execution time, we
propose a new approach based on double regularization: a Tikhonov’s regularization
and regularization in equation by viscose-elasticity.

In the present paper, we study the inverse problem of determining the initial state
in a degenerate two-dimensional parabolic equation from the theoretical analysis and
numerical computation angles. More precisely, we consider the following problem:





∂tu+A(u) = f in Ω× (0, T ),
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

(1.1)

A is the operator defined as
A(u) = −div (a(x, y)I2∇u) ,

where Ω is an open, bounded subset of R2, a ∈ C1(Ω̄) with a > 0 everywhere (a(·, ·)
can be equal to zero at any point in Ω), and f ∈ L2(Ω× (0, T )).

We now specify some notations we shall use. Let introduce the following functional
spaces

H1
a(Ω) =

{
u ∈ L2(Ω) :

√
a∇u ∈ L2(Ω) and u(x, y) = 0 for all (x, y) ∈ ∂Ω

}
,

with
‖u‖2H1

a(Ω) = ‖u‖2L2(Ω) + ‖√a∇u‖2L2(Ω).

The weak formulation of problem (1.1) is
∫

Ω

∂tuv dxdy +
∫

Ω

a(x, y)∇u∇v dxdy =
∫

Ω

fv dxdy, v ∈ H1
0 (Ω).

Let us define the bilinear form

B[u, v] =
∫

Ω

a(x, y)∇u∇v dxdy.

This form is noncoercive.
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We put
Aad = {h ∈ H1

a(Ω) : ‖h‖H1
a(Ω) ≤ r},

where r is a real strictly positive constant. Evidently, the set Aad is a bounded, closed,
and convex subset of L2(Ω).

Let us define our inverse problem.
Inverse Source Problem (ISP). Let u be the solution to (1.1). Determine the
initial state u0 from the measured data at the final time u(T, ·).
Remark 1.1. It should be mentioned that we do not need the supplement distributed
measurements to obtain the numerical solution of the inverse problem.

We treat Problem (ISP) by interpreting its solution as a minimizer of the following
problem

find u?0 ∈ Aad such that E(u?0) = min
u0∈Aad

E(u0), (1.2)

where the cost function E is defined as follows

E(u0) = 1
2T
∥∥u(T )− uobs

∥∥2
L2(Ω) ,

subject to u is the weak solution of the parabolic problem (1.1) with initial state u0.
uobs ∈ L2(Ω) is the observation data with noise.

Problem (1.2) is ill-posed in the sense of Hadamard, some regularization technique
is needed in order to guarantee numerical stability of the computational procedure
even with noisy input data. The problem thus consists in minimizing a functional of
the form

J(u0) = 1
2T
∥∥u(T )− uobs

∥∥2
L2(Ω) + ε

2
∥∥u0 − ub

∥∥2
L2(Ω) ,

here, ε being a small positive regularizing coefficient that provides extra convexity
to the functional J . ub an a priori (background state) knowledge of the state uexact

0 .
The background error is then defined as

err = ‖uexact
0 − ub‖2.

uexact
0 is called the true state, and is the state to estimate.
Firstly, we present a new theorem which gives the existence and uniqueness of

the weak solutions of problem (1.1). Secondly, with the aim of showing that the
minimization problem and the direct problem are well-posed, we prove that the solu-
tion’s behavior changes continuously with the initial conditions. For this we prove the
Lipschitz continuity of the input-output operator ϕ : u0 7−→ u, where u is the weak
solution of (1.1) with initial state u0. Thirdly, we prove the differentiability of the
functional J , which gives the existence of the gradient of J , that is computed using
the adjoint state method. Finally, to show the convergence of the descent method,
we prove that the gradient of J is Lipschitz continuous, this gives that

lim
k→∞

‖∇J(uk0)‖L2(Ω) = 0
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and
(
J(uk0)

)
k
is a monotone decreasing sequence, where (uk0)k is the sequence of

iterations obtained by the Landweber iteration algorithm

uk+1
0 = uk0 − tk∇J(uk0)

and tk is chosen by the inaccurate linear search by the Armijo–Goldstein Rule. Also we
present some numerical experiments to study the noise resistance and the performance
of this approach.

2. WELL-POSEDNESS

In case that there exists a constant c > 0 such that a > c we recall the following
theorem.
Theorem 2.1 ([5, p. 360]). Assume u0 ∈ H1

0 (Ω) and f ∈ L2(0, T ;L2(Ω)). Then there
exists a unique weak solution which solves problem (1.1) such that

u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)) , ∂tu ∈ L2(0, T ;L2(Ω)),

and we have the estimate

ess sup
0≤t≤T

‖u(t)‖H1
0 (Ω) + ‖u‖L2(0,T ;H2(Ω)) + ‖∂tu‖L2(0,T ;L2(Ω))

≤ C1

(
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖H1

0 (Ω)

)
,

where the constant C1 depends on Ω and T .
In the case when a ≥ 0 we have the following result.

Theorem 2.2. For all f ∈ L2(Ω × (0, T )) and u0 ∈ H1
a(Ω), there exists a unique

weak solution which solves problem (1.1) such that

u ∈ L2 (0, T ;H1
a(Ω)

)
∩ L∞

(
0, T ;L2(Ω)

)
, ∂tu ∈ L2(0, T ;L2(Ω)),

and we have the estimate

sup
t∈[0,T ]

‖u(t)‖2L2(Ω) +
T∫

0

‖∂tu‖2L2(Ω)dt+
T∫

0

‖√a∇u‖2L2(Ω)

≤ C
(
‖f‖2L2(0,T ;L2(Ω)) + ‖u0‖2H1

a(Ω)

)
,

where the constant C depends on Ω and T .
Proof. For any positive integer n, consider the perturbed problem





∂tu
n − div

((
a(x, y) + 1

n

)
I2∇un

)
= f in Ω× (0, T ),

un(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
un(x, y, 0) = u0, (x, y) ∈ Ω.

(2.1)
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The weak formulation of problem (2.1) is
∫

Ω

∂tu
nv dxdy +

∫

Ω

(
a(x, y) + 1

n

)
∇un∇v dxdy =

∫

Ω

fv dxdy, ∀v ∈ H1
0 (Ω). (2.2)

The bilinear form

B[u, v] =
∫

Ω

(
a(x, y) + 1

n

)
∇u∇v dxdy

is continuous and coercive. By Theorem 2.1, problem (2.1) has a unique weak solution
such that

un ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), ∂tu

n ∈ L2(0, T ;L2(Ω)).

In equation (2.2) we take v = un, which gives

∫

Ω

∂tu
nun dxdy +

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdy =

∫

Ω

fun dxdy,

1
2
d

dt

∫

Ω

(un)2dxdy +
∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdy =

∫

Ω

fun dxdy.

By integrating between 0 and t1 with t1 ∈ [0, T ], we obtain

1
2‖u

n(t1)‖2L2(Ω) −
1
2‖u

n(0)‖2L2(Ω) +
t1∫

0

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdydt

=
t1∫

0

∫

Ω

fun dxdydt,

(2.3)

and so

1
2‖u

n(t1)‖2L2(Ω) ≤
1
2‖u0‖2L2(Ω) +

t1∫

0

∫

Ω

fun dxdydt,

1
2‖u

n(t1)‖2L2(Ω) ≤
1
2‖u0‖2L2(Ω) + 1

2

t1∫

0

‖f‖2L2(Ω)dt+ 1
2

t1∫

0

‖un‖2L2(Ω)dt.

Let

M = ‖u0‖2L2(Ω) +
T∫

0

‖f‖2L2(Ω)dt.
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Then we have

‖un(t1)‖2L2(Ω) ≤M +
t1∫

0

‖un‖2L2(Ω)dt.

Gronwall’s Lemma gives

‖un(t1)‖2L2(Ω) ≤M exp
( t1∫

0

dt

)
,

‖un(t1)‖2L2(Ω) ≤M exp(T ), (2.4)

‖un(t1)‖L2(Ω) ≤
√
M exp(T ). (2.5)

Then the sequence (un)n is bounded in L∞(0, T ;L2(Ω)). Consequently, there exists
a subsequence (un)n such that

un
∗
⇀ u weakly-∗ in L∞(0, T ;L2(Ω)).

Returning to equation (2.3) with t1 = T we get

1
2‖u

n(T )‖2L2(Ω) −
1
2‖u(0)‖2L2(Ω) +

T∫

0

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdydt

=
T∫

0

∫

Ω

fun dxdydt,

T∫

0

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdydt ≤ 1

2‖u(0)‖2L2(Ω) +
T∫

0

∫

Ω

fun dxdydt,

T∫

0

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdydt ≤ 1

2‖u(0)‖2L2(Ω) + 1
2

T∫

0

‖f‖2L2(Ω)dt

+ 1
2

T∫

0

‖un‖2L2(Ω)dt.

Hence, by (2.4), we obtain

T∫

0

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdydt ≤ 1

2‖u(0)‖2L2(Ω) + 1
2

T∫

0

‖f‖2L2(Ω)dt

+ 1
2TM exp(T ).
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Let
M2 =

(
1
2 + 1

2T exp(T )
)(
‖u(0)‖2L2(Ω) + ‖f‖2L2(0,T ;L2(Ω))

)
.

Then it follows that
T∫

0

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdydt ≤M2,

and
T∫

0

‖
√
a(x, y) + 1

n
∇un‖2L2(Ω)dt ≤M2, (2.6)

T∫

0

‖
√
a(x, y)∇un‖2L2(Ω)dt ≤M2. (2.7)

From (2.4) and (2.7) we have

T∫

0

‖un(t)‖2L2(Ω)dt+
T∫

0

‖
√
a(x, y)∇un‖2L2(Ω)dt ≤ TM exp(T ) +M2.

We deduce that
‖un‖2L2(0,T ;H1

a(Ω)) ≤ TM exp(T ) +M2,

‖un‖2L2(0,T ;H1
a(Ω)) ≤

(
1
2 + 3

2T exp(T )
)(
‖u(0)‖2L2(Ω) + ‖f‖2L2(0,T ;L2(Ω))

)
, (2.8)

and, since a ∈ L∞(Ω), we obtain

‖∇un‖2L2(0,T ;L2(Ω)) ≤ TM exp(T ) +M2.

Then (un)n is bounded in L2(0, T ;H1
a(Ω)) and ∇un is bounded in L2(0, T ;L2(Ω)).

Consequently, there exists a subsequence (un)n such that

un ⇀ u weakly in L2(0, T ;H1
a(Ω)),

∇un ⇀ ∇u weakly in L2(0, T ;L2(Ω)).

In addition,
T∫

0

∥∥∥
(
a(x, y) + 1

n

)
∇un

∥∥∥
2

L2(Ω)
dt

≤ ‖(a(x, y) + 1)‖L∞(Ω)

T∫

0

∥∥∥
√(

a(x, y) + 1
n

)
∇un

∥∥∥
2

L2(Ω)
dt,
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from (2.6)
T∫

0

∥∥∥
(
a(x, y) + 1

n

)
∇un

∥∥∥
2

L2(Ω)
dt ≤ ‖(a(x, y) + 1)‖L∞(Ω)M2. (2.9)

Then ((a(x, y) + 1
n )∇un)n is bounded in L2(0, T ;L2(Ω)). Since ∇un ⇀ ∇u weakly

in L2(0, T ;L2(Ω)) and a(x, y) + 1
n → a(x, y) in L2(0, T ;L2(Ω)). Consequently, there

exists a subsequence ((a(x, y) + 1
n )∇un)n such that

(
a(x, y) + 1

n

)
∇un ⇀ a(x, y)∇u weakly in L2(0, T ;L2(Ω)).

We return to the equation (2.2) with v ∈ H1
0 (Ω) and ‖v‖H1

0 (Ω) ≤ 1:
∫

Ω

∂tu
nv dxdy +

∫

Ω

(
a(x, y) + 1

n

)
∇un∇v dxdy =

∫

Ω

fv dxdy,

∫

Ω

∂tu
nv dxdy −

∫

Ω

∣∣∣
(
a(x, y) + 1

n

)
∇un∇v

∣∣∣ dxdy ≤
∫

Ω

fv dxdy,

∫

Ω

∂tu
nv dxdy ≤

∫

Ω

∣∣∣
(
a(x, y) + 1

n

)
∇un∇v

∣∣∣ dxdy +
∫

Ω

fv dxdy.

By Hölder’s inequality, we obtain

〈∂tun, v〉L2(Ω) ≤
∥∥∥
(
a(x, y) + 1

n

)
∇un

∥∥∥
L2(Ω)

‖∇v‖L2(Ω) + ‖f‖L2(Ω)‖v‖L2(Ω),

since ‖v‖H1
0 (Ω) ≤ 1. Thus

‖∂tun‖H−1(Ω) ≤
∥∥∥
(
a(x, y) + 1

n

)
∇un

∥∥∥
L2(Ω)

+ ‖f‖L2(Ω).

By the inequality (c+ b)2 ≤ 2(c2 + b2), we obtain

‖∂tun‖2H−1(Ω) ≤ 2
(∥∥∥
(
a(x, y) + 1

n

)
∇un

∥∥∥
2

L2(Ω)
+ ‖f‖2L2(Ω)

)
.

We have in (2.9)
T∫

0

∥∥∥
(
a(x, y) + 1

n

)
∇un

∥∥∥
2

L2(Ω)
dt ≤ ‖(a(x, y) + 1)‖L∞(Ω)M2,

which implies that
T∫

0

‖∂tun‖2H−1(Ω)dt < 2
(
‖(a(x, y) + 1)‖L∞(Ω)M2 + ‖f‖2L2(0,T ;L2(Ω))

)
.
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Consequently, there exists a subsequence (∂tun)n such that
(∂tun)n ⇀ ∂tu weakly in L2(0, T ;H−1(Ω)).

Returning to equation (2.2) with v = ∂tu
n we get

∫

Ω

∂tu
n∂tu

n dxdy +
∫

Ω

(
a(x, y) + 1

n

)
∇un∇∂tun dxdy =

∫

Ω

f∂tu
n dxdy,

‖∂tun‖2L2(Ω) + 1
2
d

dt

∫

Ω

(
a(x, y) + 1

n

)
(∇un)2 dxdy =

∫

Ω

f∂tu
n dxdy,

T∫

0

‖∂tun‖2L2(Ω)dt+ 1
2

∥∥∥
√
a(x, y) + 1

n
(∇un(T ))

∥∥∥
2

L2(Ω)

= 1
2

∥∥∥
√
a(x, y) + 1

n
(∇un(0))

∥∥∥
2

L2(Ω)
+

T∫

0

∫

Ω

f∂tu
n dxdydt,

T∫

0

‖∂tun‖2L2(Ω)dt+ 1
2‖
√
a(x, y)∇un(T )‖2L2(Ω)

≤ 1
2‖
√
a(x, y) + 1∇un(0)‖2L2(Ω) +

T∫

0

∫

Ω

f∂tu
n dxdydt,

T∫

0

‖∂tun‖2L2(Ω)dt ≤
T∫

0

∫

Ω

f∂tu
n dxdydt+ 1

2‖
√
a(x, y) + 1‖2L∞(Ω)‖u0‖2H1(Ω),

T∫

0

‖∂tun‖2L2(Ω)dt ≤
1
2

T∫

0

‖f‖2L2(Ω)dt+ 1
2

T∫

0

‖∂tun‖2L2(Ω)dt

+ 1
2‖
√
a(x, y) + 1‖2L∞(Ω)‖u0‖2H1(Ω),

‖∂tun‖2L2(0,T ;L2(Ω)) ≤ ‖f‖2L2(0,T ;L2(Ω)) + ‖
√
a(x, y) + 1‖2L∞(Ω)‖u0‖2H1(Ω). (2.10)

Then (∂tun)n is bounded in L2(0, T ;L2(Ω)). Consequently, there exists a subsequence
(∂tun)n, such that

∂tu
n ⇀ ∂tu weakly in L2(0, T ;L2(Ω)).

We find upon passing to weak limits that
T∫

0

∫

Ω

∂tuv dxdydt+
T∫

0

∫

Ω

a(x, y)∇u∇v dxdydt =
T∫

0

∫

Ω

fv dxdydt, v ∈ H1
0 (Ω).

Hence, u is the weak solution of (1.1).
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Next, we prove the existence of weak solutions of (1.1) for any u0 ∈ H1
a(Ω) and

f ∈ L2(0;T ;L2(Ω)). Let (um0 )m and (fm)m be Cauchy sequences of smooth functions,
respectively, such that as m −→∞,

um0 −→ u0 in H1
a(Ω) and fm −→ f in L2(0, T ;L2(Ω)).

Denote by um the solution of (1.1) associated to um0 and fm, and un the solution
of (1.1) associated to un0 and fn.

We have the following variational problem




∫

Ω

∂t(un−um)vdxdy +
∫

Ω

a∇(un!um)∇vdxdy =
∫

Ω

(fn−fm)vdxdy, v ∈ H1
0 (Ω),

(un − um)(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
(un − um)(x, y, 0) = (un0 − um0 ), (x, y) ∈ Ω.

Similarly to inequality (2.10), we obtain

‖∂tun − ∂tum‖2L2(0,T ;L2(Ω))

≤ ‖fn − fm‖2L2(0,T ;L2(Ω)) + ‖un0 − um0 ‖2H1(Ω)‖
√
a(x, y) + 1‖2L∞(Ω),

and same to obtain inequality (2.5), we have

‖un − um‖2L∞(0,T ;L2(Ω)) ≤ T exp(T )
[
‖un0 − um0 ‖2L2(Ω) + ‖fn − fm‖2L2(0,T ;L2(Ω))

]
.

In addition, similarly to obtain inequality (2.8), we have

‖un − um‖2L2(0,T ;H1
a(Ω))

≤
(

1
2 + 3

2T exp(T )
)[
‖un0 − um0 ‖2L2(Ω) + ‖fn − fm‖2L2(0,T ;L2(Ω))

]
.

(2.11)

Therefore, there exist

u ∈ L2(0, T ;H1
a(Ω)) ∩ L∞(0, T ;L2(Ω)) and ∂tu ∈ L2(0, T ;L2(Ω))

such that as m −→∞

um −→ u in L∞(0, T ;L2(Ω)) and ∂tu
m −→ ∂tu in L2(0, T ;L2(Ω)).

Now, we prove that the weak solution of problem (1.1) is unique. Let u1, u2 two
weak solutions of problem (1.1), and δu = u1 − u2. Consequently, δu verifies





∫

Ω

∂tδuv dxdy +
∫

Ω

a(x, y)∇δu∇v dxdy = 0, v ∈ H1
0 (Ω),

δu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
δu(x, y, 0) = 0, (x, y) ∈ Ω.
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From (2.11) we get
‖δu‖2L2(0,T ;H1

a(Ω)) = 0.

Therefore,

‖δu‖H1
a(Ω) = 0, a.e. t ∈ [0, T ],
δu = 0, a.e. t ∈ [0, T ],

which implies that
u1 = u2, a.e. t ∈ [0, T ].

Now we show the existence of minimizers to problem (1.2). To do so, we need the
following lemma.

Lemma 2.3. Let u be the weak solution of (1.1) corresponding to a given initial
state u0. Then the input-output operator

ϕ : H1
a(Ω)→ L2 (0, T ;H1

a(Ω)
)
∩ L∞

(
0, T ;L2(Ω)

)

defined as ϕ(u0) := u is Lipschitz continuous.

Proof. Let δu0 ∈ L2(Ω) be a small variation such that u0 + δu0 ∈ Aad. Consider
δu = uδ − u, where u is the weak solution of (1.1) with initial state u0 and uδ is
the weak solution of (1.1) with initial state uδ0 = u0 + δu0. Consequently, δu is the
solution of





∫

Ω

∂tδuv dxdy +
∫

Ω

a(x, y)∇δu∇v dxdy = 0, v ∈ H1
0 (Ω),

δu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
δu(x, y, 0) = δu0(x, y), (x, y) ∈ Ω.

Hence, δu is a weak solution of (1.1) with f = 0. We apply the estimate in Theorem 2.2,
we obtain

‖δu‖2L2(0,T ;H1
a(Ω)) ≤ C‖δu0‖2H1

a(Ω),

and
‖δu‖2L∞(0,T ;L2(Ω)) ≤ C‖δu0‖2H1

a(Ω),

the constant C depending only on Ω and T . This implies the Lipschitz continuity of
the input-output operator

ϕ : H1
a(Ω) −→ L2 (0, T ;H1

a(Ω)
)
∩ L∞

(
0, T ;L2(Ω)

)
,

u0 7−→ u,

and hence the cost function J is continuous.
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As an immediate consequence of Lemma 2.3 we get the following result.
Proposition 2.4. The functional J is continuous on Aad and there exists a unique
minimizer u?0 ∈ Aad of J(u0), i.e.

J(u?0) = min
u0∈Aad

J(u0).

The differentiability of the functional J is deduced from the differentiability of the
input-output operator

ϕ : u0 7−→ u,

where u is the weak solution of (1.1) with initial state u0.
We have the following result.

Proposition 2.5. Let u the weak solution of (1.1) with initial state u0. The
input-output operator

ϕ : H1
a(Ω) −→ L2 (0, T ;H1

a(Ω)
)
∩ L∞

(
0, T ;L2(Ω)

)
,

u0 7−→ u

is G-derivable.
Proof. Let u0 ∈ Aad and δu0 ∈ H1

0 (Ω) a small variation such that u0 + δu0 ∈ Aad.
We define the function

ϕ′(u0) : Aad 3 δu0 7−→ δu,

where δu is the solution of the variational problem




∫

Ω

∂tδuv dxdy +
∫

Ω

a(x, y)∇δu∇v dxdy = 0, v ∈ H1
0 (Ω),

δu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
δu(x, y, 0) = δu0, (x, y) ∈ Ω,

and we pose
φ(u0) = ϕ(u0 + δu0)− ϕ(u0)− ϕ′(u0)δu0.

We want to show that
φ(u0) = o(δu0).

It is easy to verify that the function φ is solution of following variational problem




∫

Ω

∂tφv dxdy +
∫

Ω

a(x, y)∇φ∇vdxdy = 0, v ∈ H1
0 (Ω),

φ(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
φ(x, y, 0) = δu0 − (δu0)2, (x, y) ∈ Ω.

By the same way as that used in the proof of continuity, we deduce that
‖φ‖2L2(0,T ;H1

a(Ω)) ≤ C‖δu0 − (δu0)2‖2H1
a(Ω),

and
‖φ‖2L∞(0,T ;L2(Ω)) ≤ C‖δu0 − (δu0)2‖2H1

a(Ω).
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Hence, the input-output operator ϕ : u0 7−→ u is G-derivable, and we deduce the
existence of the gradient of the functional J .

Now, we are going to compute the gradient of J with the adjoint state method.

3. GRADIENT OF J

We define the Gâteaux derivative of u at u0 in the direction h ∈ L2(Ω) by

û = lim
s→0

u(u0 + sh)− u(u0)
s

,

u(u0 + sh) is the weak solution of (1.1) with initial state u0 + sh, and u(u0) is
the weak solution of (1.1) with initial state u0.

We compute the Gâteaux (directional) derivative of (1.1) at u0 in some direction
h ∈ L2(Ω), and we get the so-called tangent linear model:





∂tû+Aû = 0 in Ω× (0, T ),
û(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
û(x, y, 0) = h, (x, y) ∈ Ω.

We introduce the adjoint variable P , and we integrate:
∫

Ω

T∫

0

∂tû Pdtdxdy +
∫

Ω

T∫

0

AûP dtdxdy = 0,

∫

Ω


[ûP ]T0 −

T∫

0

û∂tPdt


 dxdy +

T∫

0

〈Aû, P 〉L2(Ω) dt = 0,

∫

Ω

[û(T )P (T )− û(0)P (0)] dxdy −
T∫

0

〈û, ∂tP 〉L2(Ω) dt+
T∫

0

〈Aû, P 〉L2(Ω) dt = 0. (3.1)

Let us take P (x, y) = 0 for all (x, y) in ∂Ω, then we may write

〈û, AP 〉L2(Ω) = 〈Aû, P 〉L2(Ω) .

And with P (T ) = 0 we may now rewrite equation (3.1) as
∫

Ω

û(0)P (0) dxdy +
T∫

0

〈û, ∂tP −AP 〉L2(Ω) dt = 0.

This gives 



T∫

0

〈û, ∂tP −AP 〉L2(Ω) dt = 〈−P (0), h〉L2(Ω) ,

P (x, y) = 0, ∀(x, y) ∈ ∂Ω and P (T ) = 0.

(3.2)
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The discretization in time of (3.2), using the rectangular integration method, gives
{∑M+1

j=0 〈û(tj), ∂tP (tj)−AP (tj)〉L2(Ω) ∆t = 〈−P (0), h〉L2(Ω) ,

P (x, y) = 0, ∀(x, y) ∈ ∂Ω and P (T ) = 0,
(3.3)

with
tj = j∆t, j ∈ {0, 1, . . . ,M + 1} ,

where ∆t is the steps in time and T = (M + 1)∆t.
The Gâteaux derivative of the cost function J at u0 in the direction h ∈ L2(Ω)

is given by
Ĵ(h) = lim

s→0

J(u0 + sh)− J(u0)
s

.

After some calculations, we arrive at

Ĵ(h) =
〈
u(T )− uobs, û(T )

〉
L2(Ω) +

〈
ε(u0 − ub), h

〉
L2(Ω) . (3.4)

The adjoint model is




{
∂tP (T )−AP (T ) = 1

∆t (u(T )− uobs),
∂tP (tj)−AP (tj) = 0, ∀tj 6= T,

P (x, y) = 0, ∀(x, y) ∈ ∂Ω,∀t ∈ (0, T ),
P (T ) = 0.

(3.5)

From equations (3.2), (3.4), and (3.5), the gradient of J is

∂J

∂u0
= −P (0) + ε(u0 − ub).

Problem (3.5) is retrograde. We make the change of variable tj ←→ T − tj .
The main steps for descent method at each iteration are the following:

– Calculate uk solution of (1.1) with initial condition u0.
– Calculate P k solution of the adjoint problem.
– Calculate the descent direction dk = −∇J(u0).
– Find tk = argmint>0J(u0 + tdk).
– Update the variable u0 = u0 + tkdk.

The algorithm ends when | J(u0) |< µ, where µ is a given small precision.
tk is chosen by the inaccurate linear search by the Armijo–Goldstein Rule as follows:

let αi, β ∈ [0, 1) and α > 0
if J(uk0 + αidk) ≤ J(uk0) + βαid

T
k dk

tk = αi and stop
if not

αi = ααi.
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4. LIPSCHITZ CONTINUITY OF THE GRADIENT

The most important issue in numerical solutions of inverse problems is the Lipschitz
continuity of the gradient, which ensures the convergence of the method of descent,
for that we have the follows result.
Proposition 4.1. Let u0 and δu0 be such that u0 + δu0 ∈ Aad. Then ∇J is Lipschitz
continuous

‖∇J(u0 + δu0)−∇J(u0)‖L2(Ω) ≤ L1‖δu0‖H1
a(Ω),

with the Lipschitz constant L1 > 0.
Proof. In Section 3, we have ∇J(u0) = −P1(T ) + ε(u0 − ub) with P1 is the solution
of the adjoint model (with change of variable tj ←→ T − tj)





{
∂tP1(0) +AP1(0) = 1

∆t (uobs − u1(T )),
∂tP1(tj) +AP1(tj) = 0, ∀tj 6= 0,

P1(x, y, t) = 0, ∀(x, y) ∈ ∂Ω, ∀t ∈ (0, T ),
P1(x, y, 0) = 0,

where u1 is the weak solution of (1.1) with initial state u0, and

∇J(u0 + δu0) = −P2(T ) + ε(u0 + δu0 − ub),
with P2 is the solution of the adjoint model (with change of variable tj ←→ T − tj)





{
∂tP2(0) +AP2(0) = 1

∆t (uobs − u2(T )),
∂tP2(tj) +AP2(tj) = 0, ∀tj 6= 0,

P2(x, y, t) = 0, ∀(x, y) ∈ ∂Ω, ∀t ∈ (0, T ),
P2(x, y, 0) = 0,

where u2 is the weak solution of (1.1) with initial state u0 + δu0.
Let δP = P1 − P2. We easily verify that δP is the solution of the variational

problem




∫

Ω

∂tδPv dxdy +
∫

Ω

∇δP∇vdxdy = 1
∆t

∫

Ω

(u2(T )− u1(T ))10dx, v ∈ H1
0 (Ω),

δP (x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
δP (x, y, 0) = 0, (x, y) ∈ Ω,

where 10(t = 0) = 1 and 10(t 6= 0) = 0, hence, δP is weak solution of (1.1) with
f = (u2(T )− u1(T ))10. We apply the estimate in Theorem 2.2 to obtain

‖δP‖2L2(0,T ;H1
a(Ω)) ≤ C

(
‖(u2(T )− u1(T ))10‖2L2(0,T ;L2(Ω))

)
,

and
‖δP‖2L∞(0,T ;L2(Ω)) ≤ C

(
‖(u2(T )− u1(T ))10‖2L2(0,T ;L2(Ω))

)
,

the constant C depending only on Ω and T .
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We showed above the Lipschitz continuity of the input-output operator

ϕ : H1
a(Ω) −→ L2 (0, T ;H1

a(Ω)
)
∩ L∞

(
0, T ;L2(Ω)

)

u0 7−→ u,

from where (
‖(u2(T )− u1(T ))10‖2L2(0,T ;L2(Ω))

)
≤ C‖δu0‖2H1

a(Ω).

Therefore

‖δP‖2L∞(0,T ;L2(Ω)) ≤ C‖δu0‖2H1
a(Ω). (4.1)

We have

‖∇J(u0 + δu0)−∇J(u0)‖L2(Ω) = ‖δP (T ) + εδu0‖L2(Ω)

≤ ‖δP (T )‖L2(Ω) + ‖εδu0‖L2(Ω).

From inequality (4.1), we obtain

‖∇J(u0 + δu0)−∇J(u0)‖L2(Ω) ≤ (
√
C + ε)‖δu0‖H1

a(Ω).

This completes the proof of the theorem.

5. DISCRETIZATION OF PROBLEM

Step 1. Full discretization
Discrete approximations of these problems need to be made for numerical imple-

mentation. To resolve problem (1.1) and the adjoint problem, we use the method
θ-schema in time. This method is unconditionally stable for 1 > θ ≥ 1

2 .
Let hx, hy be the steps in space and ∆t the steps in time, and let

xi = ihx, i ∈ {0, 1, . . . , N + 1} ,
yi = shy, s ∈ {0, 1, . . . , R+ 1} ,
bi,s = a(xi, ys),
tj = j∆t, j ∈ {0, 1, . . . ,M + 1} ,

f ji,s = f(xi, ys, tj).

We put
uji,s = u(xi, ys, tj).

Let

g1(xi, ys) = −bi,sθ∆t
h2
x

,

g2(xi, ys) = −bi,sθ∆t
h2
y

,
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g3(xi, ys) = 1 + 2θ∆tbi,s
(

1
h2
x

+ 1
h2
y

)
+ θ∆t

(
dax(xi, ys)

hx
+ day(xi, ys)

hy

)
,

g4(xi, ys) = −
(
θ∆t
h2
x

bi,s + dax(xi, ys)
θ∆t
hx

)
,

g5(xi, ys) = −
(
θ∆t
h2
y

bi,s + day(xi, ys)
θ∆t
hy

)

and

k1(xi, ys) = bi,s (1− θ) ∆t
h2
x

,

k2(xi, ys) = bi,s (1− θ) ∆t
h2
y

,

k3(xi, ys) = 1− 2(1− θ)∆tbi,s
(

1
h2
x

+ 1
h2
y

)
− (1− θ)∆t

(
dax(xi, ys)

hx
+ day(xi, ys)

hy

)
,

k4(xi, ys) = (1− θ)∆t
h2
x

bi,s + dax(xi, ys)
(1− θ)∆t

hx
,

k5(xi, ys) = (1− θ)∆t
h2
y

bi,s + day(xi, ys)
(1− θ)∆t

hy
.

Then the equation ∂tu+Au = f is approximated by

g1(xi, ys)uj+1
i−1,s + g2(xi, ys)uj+1

i,s−1 + g3(xi, ys)uj+1
i,s + g4(xi, ys)uj+1

i+1,s + g5(xi, ys)uj+1
i,s+1

= k1(xi, ys)uji−1,s + k2(xi, ys)uji,s−1 + k3(xi, ys)uji,s + k4(xi, ys)uji+1,s

+ k5(xi, ys)uji,s+1 + ∆t[(1− θ) f ji,s + θf ji,s].

We have

uj+1
0,s = uj0,s = uj+1

N+1,s = ujN+1,s = 0, s ∈ {0, 1, . . . , R+ 1} ,

and
uj+1
i,0 = uji,0 = uj+1

i,R+1 = uji,R+1 = 0, i ∈ {0, 1, . . . , N + 1} .

Let V j = (V jk )k∈{1,2,...R×N} with V jk = uji,s. This gives the equation system
{
AV j+1 = BV j + Sj with j ∈ {1, 2, . . . ,M} ,
V 0 = (u0(ihx, shy))k with k ∈ {1, 2, . . . , R×N} . (5.1)

Step 2. Discretization of the functional J :

J(u) = ε

2

1∫

0

1∫

0

(u(x, y)− ub(x, y))2dxdy + 1
2T

1∫

0

1∫

0

(u(x, y, T )− uobs(x, y))2dxdy.
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We recall that the method of Thomas Simpson to calculate an integral is
b∫

a

f(x) dx ' h

2


f(x0) + 2

N+1
2 −1∑

i=1
f(x2i) + 4

N+1
2∑

i=1
f(x2i+1) + f(xN+1)


 ,

with x0 = a, xN+1 = b, xi = a+ ih, i ∈ {1, . . . , N + 1}.
Let us define the following functions:

φ(x, y) = (u(x, y)− ub(x, y))2, (x, y) ∈ Ω,

S(y) =
1∫

0

φ(x, y) dx,

R =
1∫

0

1∫

0

φ(x, y) dxdy =
1∫

0

S(y) dy.

This gives

S(y) ' h

2


φ(0, y) + 2

N+1
2 −1∑

i=1
φ(x2i, y) + 4

N+1
2∑

i=1
φ(x2i+1, y) + φ(1, y)


 ,

and

R ' h

2


S(0) + 2

N+1
2 −1∑

i=1
S(y2i) + 4

N+1
2∑

i=1
S(y2i+1) + S(1)


 .

Next, let us define the following functions:

ϕ(x, y) = (u(x, y, T )− uobs(x, y))2, (x, y) ∈ Ω,

W1(y) =
1∫

0

ϕ(x, y) dx,

W2 =
1∫

0

W1(y) dy.

This gives

W1(y) ' h

2


ϕ(0, y) + 2

N+1
2 −1∑

i=1
ϕ(x2i, y) + 4

N+1
2∑

i=1
ϕ(x2i+1, y) + ϕ(1, y)


 ,

W2 '
h

2


W1(0) + 2

N+1
2 −1∑

i=1
W1(y2i) + 4

N+1
2∑

i=1
W1(y2i+1) +W1(1)


 ,
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therefore
J(u) ' ε

2R+ 1
2T W2.

6. NUMERICAL EXPERIMENTS

Now, we assume that we have an a priori knowledge of the state uexact
0 , under the

form of a vector ub of the same dimension as uexact
0 . This is the background state.

The background error is then defined as

err = ‖uexact
0 − ub‖2.

uexact
0 is called the true state, and is the state to estimate.
In the following tests we study the noise resistance of the proposed method.

We take

uexact
0 = x(x− 1)y(y − 1)

T
and a(x, y) =

√
(x− 0.5)2 + (y − 0.5)2.

The true state and the result of a test without regularization are presented in Figures 1
and 2, respectively.

Fig. 1. Graph of uexact
0

Fig. 2. Initial temperature in a test without regularisation. We have ‖u0−uexact
0 ‖2 = 2.9776
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The tests (Figs 3 and 4) show that the proposed algorithm is uniformly stable to
noise. The tolerable percentage of err to rebuild the initial state is err = 0.1‖uexact

0 ‖2.
The convergence of the descent method in all tests is proved by Figures 5 and 6.

Fig. 3. Initial temperature with err = 0, this figure shows that we can rebuild the initial
state. We have ‖u0−uexact

0 ‖2 = 0.0459 (left). And with err = 0.1‖uexact
0 ‖2, the reconstructed

initial condition begins to move away from the true state. We have
‖u0 − uexact

0 ‖2 = 0.0693 (right)

Fig. 4. Initial temperature with err = 1
2‖uexact

0 ‖2, we have ‖u0 − uexact
0 ‖2 = 0.2359 (left).

And with err = ‖uexact
0 ‖2, we have ‖u0 − uexact

0 ‖2 = 0.5336 (right). This figure shows that
we cannot rebuild the initial state
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Fig. 5. Graph of J

Fig. 6. Graph of ‖∇J‖2
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