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Abstract. This paper deals with the determination of an initial condition in the degenerate
two-dimensional parabolic equation

Ou — div (a(z,y)[bVu) = f,  (z,y) € Q, t € (0,T),

where Q is an open, bounded subset of R?, a € C'(Q) with a > 0 everywhere, and
f € L*(Q x (0,T)), with initial and boundary conditions

u(x7y70) :’U,O(.T,y), u ‘(’?Q: 07

from final observations. This inverse problem is formulated as a minimization problem using
the output least squares approach with the Tikhonov regularization. To show the convergence
of the descent method, we prove the Lipschitz continuity of the gradient of the Tikhonov
functional. Also we present some numerical experiments to show the performance and stability
of the proposed approach.
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1. INTRODUCTION

In many modern applications, it is necessary to estimate the initial state of a system
(typically a system governed by a partial derivative equation (PDE) of evolution) from
the partial knowledge of the system in a limited time interval.

This type of identification problem is applied in many areas. In medicine, the
thermoacoustic tomography tumor detection can be reduced to the initial data re-
construction problems [7]. In cosmology, to have a good understanding of the cosmos
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formation or its evolution, the estimation of initial conditions is necessary [6]. Other
application where the initial identification requirement is an essential procedure is the
data assimilation [8], it is used for the numerical weather forecast, ocean circulation,
and environmental prediction.

There are several approaches to identify the initial condition for non-degenerate
parabolic heat transfer, for example, [9] apply genetic algorithm with epidemic operator,
and [4] apply Tikhonov regularization.

Until the writing of these lines, all the works that deal with the degenerate problems
are made for the one-dimensional case. Among the most recent works we can mention
the work done by [10] to identify the initial condition of degenerate one-dimensional
parabolic problem.

This work is the continuation of [1-3], in which we identify the initial condition and
we study numerically the null controllability of a degenerate/singular parabolic problem
in one-dimensional case. In [3], we solve an inverse backward problem for degenerate
hyperbolic equation from final observations, and to reduce the execution time, we
propose a new approach based on double regularization: a Tikhonov’s regularization
and regularization in equation by viscose-elasticity.

In the present paper, we study the inverse problem of determining the initial state
in a degenerate two-dimensional parabolic equation from the theoretical analysis and
numerical computation angles. More precisely, we consider the following problem:

Ou+ Au) = f in x (0,7),

u(z,y,t) =0, (z,y) € 00,1 € (0,T), (1.1)

u(x,y,O) :’Lbo(l',y), (xay) €.
A is the operator defined as

A(u) = =div (a(z,y) [ Vu),
where €2 is an open, bounded subset of R?, a € C'(Q) with a > 0 everywhere (a(, )
can be equal to zero at any point in 2), and f € L*(Q x (0,7)).
We now specify some notations we shall use. Let introduce the following functional
spaces
Ha(Q) = {u e L*(Q) : VaVu € L*(Q) and u(z,y) = 0 for all (z,y) € 9Q},
with
||UH§{;(Q) = ||u||2L2(Q) + H\/aVquL?(Qy

The weak formulation of problem (1.1) is

/atuv dxdy + /a(x,y)Vqu dxdy = /fv dzdy, v € H}(Q).
Q Q Q
Let us define the bilinear form

Blu,v] = /a(m,y)Vqu dxdy.

Q

This form is noncoercive.
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‘We put
Aat = {h € HA®) : W) <7},

where 7 is a real strictly positive constant. Evidently, the set A,q4 is a bounded, closed,
and convex subset of L?().
Let us define our inverse problem.

Inverse Source Problem (ISP). Let u be the solution to (1.1). Determine the
initial state ug from the measured data at the final time u(T, ).

Remark 1.1. It should be mentioned that we do not need the supplement distributed
measurements to obtain the numerical solution of the inverse problem.

We treat Problem (ISP) by interpreting its solution as a minimizer of the following
problem
find uf € Agq such that E(uf) = min E(ug), (1.2)

up€EAad

where the cost function F is defined as follows

1
E(UO) = ﬁ ||U(T) - UObSHig(Q) )
subject to u is the weak solution of the parabolic problem (1.1) with initial state ug.
u°®® € L2(1) is the observation data with noise.

Problem (1.2) is ill-posed in the sense of Hadamard, some regularization technique
is needed in order to guarantee numerical stability of the computational procedure
even with noisy input data. The problem thus consists in minimizing a functional of
the form

1 obs [|2 € 2
J(ug) = 5T HU(T) —u® HL2(Q) + 9 Huo - ub||L2(Q) ’

here, € being a small positive regularizing coefficient that provides extra convexity
to the functional J. u® an a priori (background state) knowledge of the state ug<act.

The background error is then defined as

exact

err = |jug u®|[s.

ug¥?t is called the true state, and is the state to estimate.

Firstly, we present a new theorem which gives the existence and uniqueness of
the weak solutions of problem (1.1). Secondly, with the aim of showing that the
minimization problem and the direct problem are well-posed, we prove that the solu-
tion’s behavior changes continuously with the initial conditions. For this we prove the
Lipschitz continuity of the input-output operator ¢ : ug — u, where u is the weak
solution of (1.1) with initial state ug. Thirdly, we prove the differentiability of the
functional J, which gives the existence of the gradient of J, that is computed using
the adjoint state method. Finally, to show the convergence of the descent method,
we prove that the gradient of J is Lipschitz continuous, this gives that

. k
lim [V (uf) |20y = 0
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and (J(u)), is a monotone decreasing sequence, where (uf)y is the sequence of
iterations obtained by the Landweber iteration algorithm

up ™t = uf — 4, VI (uf)

and ty, is chosen by the inaccurate linear search by the Armijo—Goldstein Rule. Also we
present some numerical experiments to study the noise resistance and the performance
of this approach.

2. WELL-POSEDNESS

In case that there exists a constant ¢ > 0 such that a > ¢ we recall the following
theorem.

Theorem 2.1 ([5, p. 360]). Assume ug € H} () and f € L*(0,T; L*(Q)). Then there
exists a unique weak solution which solves problem (1.1) such that

u € L2(0,T; H*(2)) N L>=(0,T; HY () , Owu € L*(0,T; L*()),
and we have the estimate

esssup [[u(t) || gy (o) + llullL20,1;m2(0)) + 19wl L2(0,7302(0))
0<t<T

<G (Hf||L2(O,T;L2(Q)) + ||Uo||H5(Q)) ;
where the constant Cy depends on  and T'.

In the case when a > 0 we have the following result.

Theorem 2.2. For all f € L?>(Q x (0,T)) and uo € HX(Q), there exists a unique
weak solution which solves problem (1.1) such that

ue L?(0,T;Hy () NL>® (0,75 L*(Q)), 0w € L*(0,T;L*()),
and we have the estimate

T T
S Ol + [ 100t + [ 1VaTula)
€10,
0 0

< C (I 1x(0 rizeqen + Nuolliryey )
where the constant C' depends on Q2 and T.
Proof. For any positive integer n, consider the perturbed problem
Opu™ — div ((a(x, y) + %) IQVu”) =f inQx(0,1),
un(x7y,0) = Uo, (.’I?,y) e Q.
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The weak formulation of problem (2.1) is
1
/8tu”v dady —|—/ (a(x,y) + ) Vu"Vu dxdy = /fv dxdy, Yv € HJ(Q). (2.2)
n
Q Q Q

The bilinear form

Blu,v] = / (a(x,y) 4 Tll) VuVo drdy

is continuous and coercive. By Theorem 2.1, problem (2.1) has a unique weak solution
such that

u™ € L*(0,T; H*(Q)) N L>(0,T; Hy (), ™ € L*(0,T; L*(2)).
In equation (2.2) we take v = u™, which gives
1
/agu”u" dxdy +/ (G;(Jﬁ, y) + n) (VU,")Q drdy = /fu" dzxdy,
Q Q Q

Ld

1
- n\2 - n)2 n
5 7 (u™) dasdy+/ <a(az,y)+ n) (Vu™) d:rdyf/fu dzdy.
Q Q Q

By integrating between 0 and ¢; with ¢; € [0, T], we obtain

ty

1 1 1

S @)1~ 510" Oy + [ [ (a3 ) (V) doaya
0 Q

ty
z//fu"dxdydt,
00

and so

(2.3)

ty

1 n 1 n
S @) sy < gty + [ [ fu dudyat,
0 Q

A

IN

tl tl
1, 1 1 .
S )o@y < 5ol + 5 [ 1Bt + 5 [ Tu" Iyt
0 0

Let

T
Mﬂm%@+/m@@ﬁ
0
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Then we have

meﬂﬁm§M+/MWhm#
0

Gronwall’s Lemma gives

ty
[u" (1)1 720y < M exp (/dt>,

0

[u” (t2) 720y < M exp(T), (2.4)
[u" ()l L20) < v M exp(T). (2.5)

Then the sequence (u™),, is bounded in L>(0,T; L?(12)). Consequently, there exists
a subsequence (u"),, such that

u" 2w weakly-+ in L>(0,T; L*(Q)).

Returning to equation (2.3) with t; =T we get

T

1 n
(@) e - HuHm®+//(JW L) (Var? oy

0
T
://fu"dxdydt,
0 Q
T T
//(a(:c,y)—&—i) (Vu™)? d:z:dydtﬁ%”u ||L2(Q)—|—//fu”dxdydt,
0 Q 0O

T T

1 . 1 1
J [ (e + %) (7 dodyie < @)y + 5 [ 111
0 Q 0

T
1 n
+§/||U 1720y dt.
0

Hence, by (2.4), we obtain

T
//@ )mmwmxnmmm+/mmmt
0

+ §TM exp(T).
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Let
1 1
Mz = (5 + 5T o)) (IO ey + 1 orsmon)-

Then it follows that

T
// <a(m,y) + 711) (Vu™)? dedydt < Mo,
0 Q

1
o+ Lt < 25,

T

JIVala )9 e < M

0

From (2.4) and (2.7) we have

and

Ot~

T

T
/ ™ (8) |2yt + / 1/, ) V" |2 gyt < TM exp(T) + M.
0

0

We deduce that
w122 (0,7, 112 (0y) < TM exp(T) + Mo,

. 1 3
I Faornzion < (5 + 5Te®) ) (1nOEay + 10 rsncan)

and, since a € L*>(Q), we obtain

VU™ 12 0.7:02(0)) < TM exp(T) + M.

(2.8)

Then (u™),, is bounded in L?(0,T; H}(Q2)) and Vu™ is bounded in L?(0,T; L*(R)).

Consequently, there exists a subsequence (u™),, such that
u" —u weakly in L?*(0,T; HX(Q)),
Vu" — Vu weakly in L?(0,T; L*(Q2)).
In addition,

T

[ (w3 ) v

0

< la(w, 5) + Dllz~@) /T Hmw
0

2

dt
L2(©)

b

2
dt
L2()
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from (2.6)

dt < |[(a(w,y) + 1)l Lo () Ma. (2.9)

/H alavi) + 1)V,

Then ((a(z,y) + L)Vu"), is bounded in L2(0,7T; L?(Q2)). Since Vu™ — Vu weakly
in L2(0,T; L*(Q )) and a(zr,y) + L1 = a(z,y) in L2 (0,T; L*(9)). Consequently, there
exists a subsequence ((a(z,y) + = )Vu"), such that

L2(Q)

(a(x,y) + 1) Vu™ — a(x,y)Vu weakly in L?(0,T; L*()).
n

We return to the equation (2.2) with v € Hg(2) and vl 20y < 1t

/Otu”v da:dy—l—/ (a(x,y) + 1) Vu"Voudxdy = /fv dzxdy,
n
Q Q Q

1
/@u"v drdy — /‘ (a(a:,y) + n) Vu"Vv‘ drdy < /fv dzdy,
Q Q
/&u”vdmdy g/’ (a(z,y 1> Vu' Vv’dxder/fvdzdy
n
Q Q

By Hoélder’s inequality, we obtain

n 1 n
(O ) gy < [ (ale) + ) V0| IV + @l

since [[v[| g1 (@) < 1. Thus

n 1 n
o™ -1y < | (ale,w) + ~)Vu

L) T £l 220

By the inequality (¢ + b)? < 2(c® + b?), we obtain

0™ 131y < 2( | (alwsm) + %)vun

We have in (2.9)

/H olavi) + )9,

which implies that

+ 1 e )

L2(©)

dt < [|(a(z,y) + 1) Lo (@) M2,

L2()

T
J 100 sy < 2 (Iatsy) + Dlloe @ Ma + 171010 )
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Consequently, there exists a subsequence (9;u™),, such that
(Opu™), — Oyu  weakly in L?(0,T; H*(Q)).

Returning to equation (2.2) with v = Jyu™ we get

/&gu”@tu” dxdy + /(a ) Vu"Vou™ dmdyz/f@tu” dzdy,
n
Q Q
1d
0o + 53 (a3 ) (V) doy = / Jopu dady,

/Hé’tu syt + 5 |y fal ) + (T
T
- o T

L2(Q)+//f8tu dxdydt,
’ 1
/ 19007 3yt + 5 |1/l 5) Ve () oy
0

LQ(Q)

0

T
IvVa(x,y) +1Vu™(0 ||L2(Q —i—//f@tu" dzdydt,
0 Q

T

T

n n 1
[0 Byt < [ [ g0 dedydt + 513/l 51 T T~ o ol
0

0 Q
T T 1 A
. 1 n
/Ilﬁtu 1320t < §/||f\|%z(mdt+§/|\8tu 1720 dt
0 0 0

1
+ 5”\/ a(z,y) + 1“%”(9)”’“0”?{1(9)7

HatunHQL?(o,T;m(Q)) < ||f||2L2(o,T;L2(Q)) + [[Valz,y) + 1”%00(9)”“0”%11(9)' (2.10)
Then (dyu™),, is bounded in L?(0,T; L?(£2)). Consequently, there exists a subsequence
(Oyu™),,, such that

" — dyu weakly in L*(0,T; L*(2)).

We find upon passing to weak limits that
T T T

//atuv dmdydt+//a(x,y)Vqud:cdydt://fvda:dydt, v € Hy(9Q).

0 Q 0 Q 0 Q

Hence, u is the weak solution of (1.1).
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Next, we prove the existence of weak solutions of (1.1) for any ug € H.(Q) and
f € L*0;T; L*(2)). Let (u'),, and (™)., be Cauchy sequences of smooth functions,
respectively, such that as m — oo,

ud' — ug in H1(Q) and f™ — fin L*(0,T; L*(Q)).

Denote by u™ the solution of (1.1) associated to uf* and f™, and u™ the solution
of (1.1) associated to ufy and f™.
We have the following variational problem

/8t(u"—um)vdxdy—|— /aV(u"!um)Vvda:dy = /(f”—fm)vdxdy, v e Hé(Q),
Q Q Q

(un - um)(sc,y,t) = Oa (x,y) € an te (OvT)7

(u" —u™)(2,y,0) = (ug —ug'), (z,y) € Q.

Similarly to inequality (2.10), we obtain

0™ — Beu™ (|72 0,712 02))
<™ = ™22 0 12200y + 146 — ug 17 o) 1V a(z,v) + 7<)

and same to obtain inequality (2.5), we have

[[u — Um||2Lo°(o,T;L2(Q)) < Texp(T) [||u6‘ - u6n||2L2(Q) +If" = fm”%Z(o,T;L?(Q))} .

In addition, similarly to obtain inequality (2.8), we have

[[u™ — Um||2L2(o,T;H;(Q))

(2.11)

1 3 n m n m
< (2 + 2Texp(T)) [Huo — Ug ”%Q(Q) +fr=f H%?(O,T;LHQ))} .

Therefore, there exist
we L2(0,T; HA(Q)) N L>(0,T; L*(Q)) and dwu € L*(0,T; L*(Q))
such that as m — oo
u™ — win L0, T; L*(Q)) and  dwu™ — Oyu in L?(0,T; L*(Q)).

Now, we prove that the weak solution of problem (1.1) is unique. Let uq, uy two
weak solutions of problem (1.1), and du = u; — uz. Consequently, du verifies

/Btéuv dzdy + /a(x,y)Véqu drdy =0, ve€ H}(Q),
o)

Q
5’LL((E7y7t) = 07 ($7y> € 897 te (O7T)7

du(z,y,0) =0, (z,y) € Q.
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From (2.11) we get
181220, 75112 00y = O-

Therefore,

0ul 11 () = 0, a.e. t € [0,T],
du=0, ae. tel0,T],

which implies that
up = ug, a.e. t €[0,7T]. O

Now we show the existence of minimizers to problem (1.2). To do so, we need the
following lemma.

Lemma 2.3. Let u be the weak solution of (1.1) corresponding to a given initial
state ug. Then the input-output operator

@ Hy(Q) — L* (0,5 Hy(Q)) N L™ (0,T; L*())
defined as (ug) := wu is Lipschitz continuous.

Proof. Let dug € L?*(2) be a small variation such that ug + dug € Agq. Consider
du = u® — u, where u is the weak solution of (1.1) with initial state ug and u°® is
the weak solution of (1.1) with initial state uj = ug + dug. Consequently, du is the
solution of

/6t(5uv dxdy + /a(x, y)VéuVudzdy =0, v € H(Q),
Q

Q
du(z,y,t) =0, (z,y) €09, t € (0,T),
ou(z,y,0) = dug(z,y), (z,y) € Q.

Hence, du is a weak solution of (1.1) with f = 0. We apply the estimate in Theorem 2.2,
we obtain

180132 0 711 2y < CllSu0 111 )

and

||($’LL||2LOQ(O7T;L2(Q)) < CH(su()”%{é(Q)’

the constant C' depending only on Q and T'. This implies the Lipschitz continuity of
the input-output operator

@ HY(Q) — L? (0,75 Hi () N L (0,T; L*()),
Uug — u,

and hence the cost function J is continuous. O
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As an immediate consequence of Lemma 2.3 we get the following result.
Proposition 2.4. The functional J is continuous on A.q and there exists a unique

minimizer ul € Aqq of J(uop), i.e.

J(ug) = min J(up).

uo€Aad

The differentiability of the functional J is deduced from the differentiability of the
input-output operator
YUy —> U,

where u is the weak solution of (1.1) with initial state ug.
We have the following result.

Proposition 2.5. Let u the weak solution of (1.1) with initial state ug. The
input-output operator

@ HY(Q) — L? (0,75 H, () N L™ (0,T; L*()),
Ug — U
1s G-derivable.

Proof. Let ug € Auq and dug € HE () a small variation such that ug + dug € Agg.
We define the function
¢’ (ug) : Agq D dug — du,

where du is the solution of the variational problem

/&géuv drdy + /a(m, y)VouVudzdy =0, ve HHQ),
Q Q
du(z,y,t) =0, (z,y) € 99, t € (0,T),
du(z,y,0) = dug, (z,y) € Q,
and we pose
d(uo) = p(uo + dug) — p(uo) — ¢’ (uo)duo.
We want to show that
¢(uo) = o(duo).

It is easy to verify that the function ¢ is solution of following variational problem

/8t¢fu dxdy + /a(a:,y)Vd)Vvdxdy =0, ve H& (),
Q Q
P(z,y,t) =0, (z,y) € 09, t € (0,T),

¢($,y,0) = 6“0 - (6u0)27 (Ivy) € (.
By the same way as that used in the proof of continuity, we deduce that
||¢H%2(0,T;H;(Q)) < Cljduo — (5“0)2”%&(9)’

and
1117 (0.7 222y < Cllduo — (5u0)* |33 (-
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Hence, the input-output operator ¢ : ug — u is G-derivable, and we deduce the
existence of the gradient of the functional J. O

Now, we are going to compute the gradient of J with the adjoint state method.

3. GRADIENT OF J

We define the Gateaux derivative of u at ug in the direction h € L?(Q) by
u(ug + sh) — u(ugp)

i = lim ,
s—0 S

u(ug + sh) is the weak solution of (1.1) with initial state ug + sh, and w(ug) is
the weak solution of (1.1) with initial state wp.
We compute the Gateaux (directional) derivative of (1.1) at ug in some direction
h € L*(Q2), and we get the so-called tangent linear model:
O+ Aau=0 inQx(0,7),
a(z,y,t) =0, (z,y)€dQ, te(0,T),
(z,y,0) =h, (z,y) €.

We introduce the adjoint variable P, and we integrate:

T T
//6”1 Pdtdxdy—l—//AﬂP dtdxdy = 0,
0 Q0

Q
T T

/ [aP)) — / 40, Pdt | dedy + / (Al P) g dt =0,
Q 0 0
T T

/ [@(T)P(T) — a(0)P(0)] dady — / (8, 0P 2y dt + / (Adi, P) oy dt = 0. (3.1)
Q 0 0
Let us take P(x,y) = 0 for all (z,y) in 09, then we may write

And with P(T') = 0 we may now rewrite equation (3.1) as

T

/ 4(0) P(0) dady + / (8, 0,P — AP) g dt = 0.
Q 0

This gives

T
/ (@, 0P — AP) (g dt = (—P(0),h) 12 » 32)
0

P(z,y) =0, Y(z,y) € 02 and P(T) = 0.
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The discretization in time of (3.2), using the rectangular integration method, gives
Zi\/i-gl <ﬁ(tj)a atP(tj) - Ap(tj)>L2(gz) At = <—P(0), h>L2(Q) s (3 3)
P(z,y) =0, ¥(z,y) € 02 and P(T) =0, '

with
t;=jAt, je{0,1,...,M+1},

where At is the steps in time and T' = (M + 1)At.
The Gateaux derivative of the cost function J at ug in the direction h € L?(£2)
is given by
J(h) = lim J(ug + sh) — J(uo).

s—0 S

After some calculations, we arrive at
J(h) = (u(T) = u®*, &(T)) o) + (o = u"),B) o g - (3.4)
The adjoint model is

OP(T) — AP(T) = & (u(T) — u®),

O, P(t;) — AP(t;) =0, Vt; T,
P(z,y) =0, Y(z,y) € 0Q,Vt € (0,T),
P(T) = 0.

(3.5)

From equations (3.2), (3.4), and (3.5), the gradient of J is

oJ

g —P(0) 4 e(ug — u®).

Problem (3.5) is retrograde. We make the change of variable t; «— T — ;.
The main steps for descent method at each iteration are the following:

Calculate u* solution of (1.1) with initial condition u.
— Calculate P* solution of the adjoint problem.
Calculate the descent direction dy = —V.J(uy).

— Find t;, = argmin, oJ(uo + tdy).

— Update the variable ug = ug + txdg.

The algorithm ends when | J(ug) |< p, where p is a given small precision.
tx is chosen by the inaccurate linear search by the Armijo—Goldstein Rule as follows:

let a;, 8 €[0,1) and « > 0

if J(ub + cqdy) < J(uk) + BaydE dy,
tr = a; and stop

if not
a; = OG-
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4. LIPSCHITZ CONTINUITY OF THE GRADIENT

The most important issue in numerical solutions of inverse problems is the Lipschitz
continuity of the gradient, which ensures the convergence of the method of descent,
for that we have the follows result.

Proposition 4.1. Let ug and dug be such that ug + dug € Aqq. Then VJ is Lipschitz
continuous
VI (uo + duo) — VI (uo)llrz2(e) < Lullduol ().,

with the Lipschitz constant L > 0.

Proof. In Section 3, we have V.J(ug) = —Py(T) + (up — u®) with Pj is the solution
of the adjoint model (with change of variable ¢; «+— T —t;)

Oy Py (0) + AP, (0) = é(u‘)bs — U (T)),
8tP1(tj) + APl(tj) =0, th 7é 0,
Py(z,y,t) =0, V(z,y) € 0Q, Vt € (0,T),
Pl(xvyao) =0,
where u; is the weak solution of (1.1) with initial state ug, and
VJ(UQ + 5UO) = _PQ(T) + E(’LLO + dug — Ub),
with P, is the solution of the adjoint model (with change of variable t; «— T —t;)
i P2(0) + AP>(0) = a7 (u®* — up(T)),
atPQ(tj)+AP2(tj) :O, th %O,
Py(x,y,t) =0, V(z,y) € 09, Vt € (0,T),
PQ(xvya()) = 07

where us is the weak solution of (1.1) with initial state ug + dug.
Let 6P = P, — P,. We easily verify that 6P is the solution of the variational
problem

1
/atéPv dxdy + / VoPVvdxdy = AL /(UQ(T) —uy (T))1odz, v € H} (Q),
Q Q Q
6P(z,y,t) =0, (z,y) € 09, t € (0,T),
6P(x,y,0) =0, (z,y) €,

where 1o(t = 0) = 1 and 1o(¢t # 0) = 0, hence, 6P is weak solution of (1.1) with
f = (u2(T) —u1(T))1y. We apply the estimate in Theorem 2.2 to obtain

112 0,230y < € (1 2(T) = w1 (D)o, ) -

and
1P w0120 = € (1 (T) =11 (D) Dol 1:10) ) -
the constant C' depending only on Q and T



442 Khalid Atifi, El-Hassan Essoufi, and Bouchra Khouiti

We showed above the Lipschitz continuity of the input-output operator
@ Hy(Q) — L? (0,75 Hy () N L™ (0,T; L*(2))
Ug — u,

from where
(I2(T) = e (D) Lol 0, i1z ) < Clldwolrs -

Therefore
18P 7 (0,722 (52)) < Cllduollzg (g)- (4.1)
We have
VT (ug + duo) — VI (uo)ll 22y = I[0P(T) + eduo||£2(a)
< |N6P(T)|z2(0) + lleduollL2 ()
From inequality (4.1), we obtain
||VJ(U0 + (5U0) - VJ(Uo)HLQ(Q) < (\/5 + E)||(SUO||Hé(Q)

This completes the proof of the theorem. O

5. DISCRETIZATION OF PROBLEM

Step 1. Full discretization

Discrete approximations of these problems need to be made for numerical imple-
mentation. To resolve problem (1.1) and the adjoint problem, we use the method
#-schema in time. This method is unconditionally stable for 1 > 6 > %

Let h,, hy be the steps in space and At the steps in time, and let

xizlhm; Z6{0,].,,]\/v<l>]_}’
y; = shy, se€{0,1,...,R+1},
bi75 = a(xivys)a

t;=jAt, je{0,1,...,M+1},
ij,s = f(xuymtj)

We put ‘
uf o = u(wi, Ys, t;)-
Let
b; sOAL
G1(zi,ys) = — nZ
bi SOAL
92(Ti, ys) = —

2 ’
hy
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1 1 X iy Ys d v Ys
93(x5,ys) = 14 20Atb; (+ )+9At<da (x y)+ ay(z y)>’

n2 T h2 Iy Iy
OAL OAL
94(%'»%) - < h2 bzs +dam(l.lvys) hx >7
OAL OAL
95(3317%) - < h2 bzs‘i’day(xuys) hy >
and
b s (1 —0)At
kl(l’ivys) - %7
b; s (1 —0) At
ko(wi,ys) = %7
Yy
1 1 dam(xiays) day(miays)
Ly =1—2(1— (=+=)-a-9a
ks(xi,ys) =1 —2(1 — 0)Atb; 4 (h% + hi) (1-19) t( » + h ,
1—-0)At 1—-0)At
k4(xi7ys) = %bi,s + dam(zivys)%v
1—-0)At 1—-0)At
ks(zi,ys) = %bi,s + da’y(xiays)(hy)'
Yy

Then the equation dyu + Au = f is approximated by

+1 j+1
g1 (%ﬁl/s) s — 154‘92(131,2%) Ui s— 1+g3(-r1ays) +g4(xzvys) Z+1’5+95(l‘iays)ug:§+1

= kl(xzays) Wiyt kQ(xuys) (P k3(xuys) U o+ k4($i, ys)ungLs
+ k5(xi7 ys)ui,erl + At[(l - 9) ,8 + efzj,s]

‘We have
j+1 _ . J Jj+1 _ _
Upy = Uy =Uyn = uNJrlS—O7 s€{0,1,...,R+1},
and
Jg+1r _ 3 _ g+l  _ 3 _ .
Uy =Ujg=Uj gy =Upy =0, i€{0,1,...,N +1}.

Let VI = (V/ )ke{l 2,...RxN} With Vk] = u . This gives the equation system

{AVj+1— BVIi+Si  withje{1,2,...,M}, 51)

VO = (ug(ihg, shy)), withke{1,2,...,Rx N}.

Step 2. Discretization of the functional J:

1 1 1 1
1
//(U(w,y)— )2dady + ﬁ// w(a,y, T) — u(z,y)) dedy.
0 0 0 0

l\D\“‘)
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We recall that the method of Thomas Simpson to calculate an integral is

b N+1 N+1
h 2 2
J 10 =G | a2 3 S +43 Sen) 4 S|
with ©g = a, zy41 =b, z; =a+ih,i € {1,...,N +1}.
Let us define the following functions:

o(x,y) = (u(z,y) —u’(z,))*, (z,y) €D,

Sy):/1¢($vy) dx
11 1
RO/O/QS:L’y dxdyO/S(y)dy.

This gives
Ni1 g N1
h 2 2
S(y) ~ 5 ¢(0,y) +2 Z (w20, y) +4 Z P(w2i+1,y) + o(L,y) |
i=1 i=1
and
N1 Ni1
h 2 2
Rﬁg S(0) +2 ; S(y2i)+4;S(y2i+1)+S(1)

Next, let us define the following functions:

o(x,y) = (u(z,y, T) —u(z,9))%, (z,y) €,
=/s0(x
0
1
Wa Z/Wl(y) dy

This gives

r N1 g

h 2

Wl(y) = 5 @(Oa y) +2 Z QD T2, Y + 4 Z 1‘21-1,-1, + 80(1 y) )
1=1

- Nt g N+l

h 2 2

W2 ~ 5 W1(0)+2 ; Wl(y2i)+4; Wl(y27;+1)+W1(1) s
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therefore 1
Ju)~ <SR+ —=W:
(W) =3B+ 57 e
6. NUMERICAL EXPERIMENTS
Now, we assume that we have an a priori knowledge of the state u$***, under the

form of a vector u® of the same dimension as u§*®. This is the background state.
The background error is then defined as

err = ”ugxact o ubH2'
ug*@t is called the true state, and is the state to estimate.
In the following tests we study the noise resistance of the proposed method.
We take

ugoret = DWWy aa,y) = e~ 057 + (s~ 057

The true state and the result of a test without regularization are presented in Figures 1
and 2, respectively.

Fig. 2. Initial temperature in a test without regularisation. We have ||ug — u§*||2 = 2.9776
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The tests (Figs 3 and 4) show that the proposed algorithm is uniformly stable to
noise. The tolerable percentage of err to rebuild the initial state is err = 0.1]|ug< 5.
The convergence of the descent method in all tests is proved by Figures 5 and 6.

007 5 007+

006+ 0064

005+

0044

e
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g
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/IIII% “\\\_ N
WO

002

001 e 001y

Fig. 3. Initial temperature with err = 0, this figure shows that we can rebuild the initial
state. We have ||uo — u§**||2 = 0.0459 (left). And with err = 0.1||ug***"||2, the reconstructed
initial condition begins to move away from the true state. We have
luo — ug*<||l2 = 0.0693 (right)
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Fig. 4. Initial temperature with err = 1|lug***"||2, we have |lug — u§****||2 = 0.2359 (left).
And with err = [[u§**°*||2, we have |Juo — u§***||2 = 0.5336 (right). This figure shows that
we cannot rebuild the initial state
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