Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Indonesia is the country with the greatest potential for sago in the world. This research is intended to determine the carbon footprint of sago starch produced from a semi-mechanical process. The calculation was carried out using the LCA approach with the system boundary of cradle to gate. The process steps were carried out in a combination of manual work and diesel-driven engines. The inventory data on material, energy input flows and emissions were obtained from 3 samples of typical medium-scale semi-mechanical sago mills. It was found that the carbon footprint of the sago produced from semi-mechanical processes was 37.9±0.6 kgCO2eq per 1 ton of dried sago starch. Further analysis shows that 62% of the carbon footprint comes from the extraction stage and 38% from the transportation. It can be estimated that the amount of greenhouse gas emissions from the semi-mechanical sago starch production in Indonesia for 2018 reached around 2,617,639 kg CO2eq.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
159--166
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Department of Agroindustrial Technology, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
- Department of Agricultural Engineering, University of Musamus, Merauke 99616, Indonesia
autor
- Department of Agroindustrial Technology, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
autor
- Department of Agroindustrial Technology, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
autor
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Tangerang Selatan 15314, Indonesia
Bibliografia
- 1. Bantacut T. 2011. Sago: Resource for Main Food Diversification. PANGAN, Vol. 20, No. 1, March, 27–40
- 2. Syakir M and Elna . 2013. Potential of Sago Plants (Metroxylon sp.) As Bioenergy Raw Materials. Perspektif 12(2), 57–64.
- 3. Ni’mah S, Achmad R, Heru S. 2013. Design of Sago Flour Processing Plant, Pomits Engineering Journal 2(1), 1–3
- 4. Nugraha AZ, Yani M, Wiloso EI. 2017. Life Cycle Assessment (LCA) of Cement Products at PT. Indocement Tunggal Prakarsa. Thesis : Institut Pertanian Bogor. Bogor.
- 5. Directorate General of Plantation. 2017. Statistics of plantations in Indonesia for sago commodities 2015–2017. Secretariat of the directorate general of Indonesian plantations
- 6. International Standards Organization (ISO), 2006. Environmental management-Life Cycle Assessment-Principles and framework, ISO14040, BSI, CEN
- 7. UNEP 2007. Life cycle management-A business guide to sustainability, United National Environmental Programme, Geneva
- 8. Cuce L, Klemes JJ, Kravanja Z, 2012. A review of footprint analysis tools for monitoring impacts on sustainability. J of Cleaner Production, 34, 9–12.
- 9. International Standards Organization (ISO), 2008. Environmental management-Life Cycle Assessment-Principles and framework, ISO14040, BSI, CEN.
- 10. International Standards Organization (ISO), 2008. Environmental management-Life Cycle Assessment-Principles and framework, ISO14040, BSI, CEN.
- 11. UNEP 2007. Life cycle management-A business guide to sustainability, United National Environmental Programme, Geneva
- 12. Pei-Lang, A.T., A.M.D. Mohamed and A.A. Karim. 2005. Sago Starch and Composition of Associated Components in Palms of Different Growth Stages. Carbohydrate Polymers 63 (2006) 283–286
- 13. Saifuddin D. 2000. Design of Advanced Sago Starch Processing Plant Using SLP. [Thesis].Bogor(ID). InstitutPertanianBogor
- 14. Anbukumar S, Prasad NM, Kumar MA. 2014. Effluent Treatment for Sago Industry Using Zeolite and Active Carbon. Open J Water Pollut Treat. 1(2):18–26,doi 10.15764.
- 15. Richana N, Lestari P, Chilmijati N, dan Widowati. 2000. Characteristics of starch (Garut and Sago tapioca) and Utilization into Liquid Glucose. Inside: Indonesian Food Technology Association (PATPI), editor. Empowering the Food Industry in the Context of Increasing Competitiveness in Facing the Era of Free Trade. Food Industry Seminar. Surabaya: PATPI, 396–406.
- 16. Ahmad F B and Williams P A, 1998. Rheological Properties of Sago Starch. J. Agric Food Chem. 46(1): 4060–4065
- 17. Chavalparit O, Ongwandee M., 2009. Clean technology for the tapioca starch industry in Thailand. J. Of Cleaner Production, 17, 105–110
- 18. Sritoth K, Pitachomkwan K, Wanlapatit S, Oates CG., 2000b. Cassava starch technology: the Thai Experience. Stach/Starke, 52, 439–449
- 19. Usubharatana P and Phungrassami H. 2015. Carbon Footprint of Cassava Starch Production in NorthEastern Thailand. Procedia CIRP 29, 462–467
- 20. Nemecek T, Kagi T, Blaser S. 2007. Life Cycle Inventories of Agricultural Production Systems. Vol. 15.
- 21. Wurdinger E., Roth U., Wegener A. & Peche R. (2003) Kunststoffe aus Nachwachsenden Rohstoffen: Vergleichende okobilanz fur Loose-fillPackmittel aus Starke bzw. aus Polystyrol”. Final report. BIfA, IFEU, Flo-Pak (eds.), Projektforderung: Deutsche Bundesstiftung Umwelt; Augsburg, Marz 2003, pp. 514.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98b81e09-8417-4931-bf57-d290f292de5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.