PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

DNA Ion Detector and Logic Circulation Amplification Model Based on Mercury and Silver Ions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Here, two two-way ion detector (TWID) and one DNA cascade logic circuit and signal amplifier model had been created. Firstly, we have constructed two bidirectional mercury and silver ion detectors, both of which can be used to detect mercury and silver ions at the same time, that means a single molecule can detect two kinds of heavy metal ions at the same time. The unique design of the switches offers significant advantages over existing methods. In addition, the two bidirectional ion detectors enable the design of the logic gates (OR, AND) using Ag+ and Hg2+ as inputs. Secondly, we constructed a two-level “AND” logic gate by combining the above two logic gates. This logic model takes the output of “OR” logic gate as the input of the next logic gate, which not only realizes the logic operation, but also achieves the function of signal amplification. We are able to recognize the logic output signals effortlessly by observing the amount of fluorescence. It’s a simple, economic and safe approach for the design of a complex multiple-input DNA logic circulation amplification model. Finally, we proved the feasibility of our model by PAGE and fluorescence alteration.
Słowa kluczowe
Wydawca
Rocznik
Strony
195--205
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Life Science, Shaanxi Normal University, Xi’an 710119, China
autor
  • Department of Life Science, Shaanxi Normal University, Xi’an 710119, China
autor
  • Department of Life Science, Shaanxi Normal University, Xi’an 710119, China
autor
  • Department of Life Science & National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China
Bibliografia
  • [1] Tchounwou PB,Ayensu WK, Ninashvili N, et al. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 2003, 18(3):149-175. doi:10.1002/tox.10116.
  • [2] Yin J, He X, Jia X, et al. Highly sensitive label-free fluorescent detection of Hg2+ ions by DNA molecular machine-based Ag nanoclusters. Analyst, 2013, 138(8):2350-6. doi:10.1039/c3an00029j.
  • [3] Wang S, Xu H, Yang Q, et al. A triphenylamine-based colorimetric and turn-on fluorescent probe for detection of cyanide anions in live cells. Rsc Advances, 2015, 5(59):47990-47996. doi:10.1039/c5ra05807d.
  • [4] Li L, Li B, Di C, et al. Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chemistry, 2010, 122(3):895-900. doi:10.1016/j.foodchem.2010.03.032.
  • [5] Li L, Li B, Qi Y, et al. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Analytical & Bioanalytical Chemistry, 2009, 393(8):2051-7. doi:10.1007/s00216-009-2640-0.
  • [6] Yiko Miyake, Humika Togashi, Mitsuru Tashiro, et al. Mercury II -Mediated Formation of Thymine-Hg II -Thymine Base Pairs in DNA Duplexes Journal of the American Chemical Societ.2006,128.2172-2173. doi:10.1021/ja056354d.
  • [7] Zuo X, Zhang H, Zhu Q, et al. A dual-color fluorescent biosensing platform based on WS2 nanosheet for detection of Hg(2+) and Ag(+). Biosensors & Bioelectronics, 2016,85:464. doi:10.1016/j.bios.2016.05.044.
  • [8] Bartsch RA, Chapoteau E, Czech BP, et al. Chromogenic Diaza-Crown Ether Dicarboxylic Acids for Determination of Calcium Ions. Journal of Organic Chemistry, 2002,59(3):616-621. doi:10.1021/jo00082a019.
  • [9] Nixon DE, Burritt M F, Moyer TP. Chromogenic Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. Journal of Analytical Toxicology, 2007, 31(5):281. doi:10.1093/jat/31.5.281.
  • [10] Gómez-Ariza JL, Lorenzo F, García-Barrera T. Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Analytical & Bioanalytical Chemistry, 2005, 382(2):485-492. doi:10.1007/s00216-005-3094-7.
  • [11] Fong BMW, Siu TS, Lee JSK, et al. Determination of Mercury in Whole Blood and Urine by Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Toxicology, 2007, 31(5):281. doi:10.1093/jat/31.5.281.
  • [12] Luca Prodi, Carlotta Bargossi, Marco Montalti, et al. An Effective Fluorescent Chemosensor for Mercury Ions Journal of the American Chemical Society, 2000, 122(28):6769-6770. doi:10.1021/ja0006292.
  • [13] Nolan EM, Lippard SJ. A ”turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. Journal of the American Chemical Society, 2003, 125(47):14270. doi:10.1021/ja037995g.
  • [14] Caballero A, Martnez R, Lloveras V, et al. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. Journal of the American Chemical Society, 2005, 127(45):15666-7. doi:10.1021/ja0545766.
  • [15] Deng W, Tan Y, Li Y, et al. Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode. Microchimica Acta, 2010, 169(3-4):367-373. doi:10.1007/s00604-010-0366-5.
  • [16] Tanaka Y, Oda S, Yamaguchi H, et al. 15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society, 2007, 129(2):244-5. doi:10.1021/ja065552h.
  • [17] Ono A, Cao S, Togashi H, et al. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes Chemical Communications, 2008, 39(39):4825. doi:10.1039/b808686a.
  • [18] Feng W, Xue X, Liu X. One-Step, Room-Temperature, Colorimetric Detection of Mercury(Hg(2+)) Using DNA/Nanoparticle Conjugates Journal of the American Chemical Society, 2008, 130(11):3244-3245. doi:10.1021/ja076716c.
  • [19] He X, Qing Z, Wang K, et al. Engineering a unimolecular multifunctional DNA probe for analysis of Hg2+ and Ag+. Analytical Methods, 2012, 4(2):345-347. doi:10.1039/C2AY05823E.
  • [20] Yun L, Yang L, Mao X, et al. Electrochemical detection of glutathione based on Hg 2+ -mediated strand displacement reaction strategy. Biosensors & Bioelectronics, 2016,85:664-668. doi:10.1016/j.bios.2016.05.069.
  • [21] Wang F, Liu X, Willner I. DNA switches: from principles to applications. Angewandte Chemie International Edition, 2015, 54(4):1098-129. doi:10.1002/anie.201404652.
  • [22] Patel PD. (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends in Analytical Chemistry, 2002, 21(2):96-115. https://doi.org/10.1016/S0165-9936(01) 00136-4Getrightsandcontent.
  • [23] Bagni G, Osella D, Sturchio E, et al. Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Analytica Chimica Acta, 2006, 573-574(1):81. doi:10.1016/j.aca.2006.03.085.
  • [24] Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors & Bioelectronics, 2006, 21(10):1887-92. doi:10.1016/j.bios.2005.10.027.
  • [25] Bond J W. Value of DNA evidence in detecting crime. Journal of Forensic Sciences, 2007, 52(1):128-36. doi:10.1111/j.1556-4029.2006.00323.x.
  • [26] Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239(4839):487-491. doi:10.1126/science.2448875.
  • [27] Li X, Guo J, Zhai Q, et al. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification. Analytica Chimica Acta, 2016, 934:52. doi:10.1016/j.aca.2016.06.034.
  • [28] Walker GT, Fraiser MS, Schram JL, et al. Strand displacement amplificationan isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 1992, 20(7):1691-6. https://doi.org/10.1093/nar/20.7.1691.
  • [29] Sha L, Zhang X, Wang G. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier. Biosensors & Bioelectronics, 2016, 82:85-92. doi:10.1016/j.bios.2016.03.066.
  • [30] Wu C, Cansiz S, Zhang L, et al. A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. Journal of the American Chemical Society, 2015, 137(15):4900. doi:10.1021/jacs.5b00542.
  • [31] Song Q, Shi Y, He D, et al. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chemistry, 2015, 21(6):2417-22. doi:10.1002/chem.201405726.
  • [32] Turing A. On computable numbers, with an application to the Entscheidungsproblem. Proceeding of the London Mathematical Society,1937,2(1):230-265. doi:10.1021/jacs.5b00542.
  • [33] Xu J. Probe Machine. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(7):1405-1416. doi:10.1109/TNNLS.2016.2555845.
  • [34] Farhadtoosky S, Jahanian A. Customized Placement Algorithm of Nanoscale DNA Logic Circuits. Journal of Circuits Systems & Computers, 2017. https://doi.org/10.1142/S021812661750150X.
  • [35] Yang J, Dong C, Dong Y, et al. Logic Nanoparticle Beacon Triggered by the Binding-Induced Effect of Multiple Inputs. Acs Applied Materials & Interfaces, 2014, 6(16):14486-14492. doi:10.1021/am5036994.
  • [36] Shi X, Wang Z, Deng C, et al. A novel bio-sensor based on DNA strand displacement. Plos One, 2014, 9(10):. doi:10.1371/journal.pone.0108856.
  • [37] Jing Y, Jiang S, Liu X, et al. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates. Acs Applied Materials & Interfaces, 2016, 8(49):34054-34060. doi:10.1021/acsami.6b10266.
  • [38] Pan L, Wang Z, Li Y, et al. Nicking enzyme-controlled toehold regulation for DNA logic circuits. Nanoscale, 2017, 9(46):18223-18228. doi:10.1039/c7nr06484e.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98b6731c-7cdf-4d23-a57f-b7d23331f933
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.