PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controllability-oriented placement of actuators for active noise-vibration control of rectangular plates using a memetic algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For successful active control with a vibrating plate it is essential to appropriately place actuators. One of the most important criteria is to make the system controllable, so any control objectives can be achieved. In this paper the controllability-oriented placement of actuators is undertaken. First, a theoretical model of a fully clamped rectangular plate is obtained. Optimization criterion based on maximization of controllability of the system is developed. The memetic algorithm is used to find the optimal solution. Obtained results are compared with those obtained by the evolutionary algorithm. The configuration is also validated experimentally.
Rocznik
Strony
529--536
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • 1. Arabyan A., Chemishkian S. (1998), H1-optimal mapping of actuators and sensors in flexible structures, Proceedings of the 37th IEEE Conference, 821-826.
  • 2. Anderson B., Moore J.B. (1990), Optimal control: linear quadratic methods, Prentice Hall, Englewood Cliffs, NJ, 357.
  • 3. Chemishkian S., Arabyan A. (1999), Intelligent algorithms for H1-optimal placement of actuators and sensors in structural control, Proceedings of the American Control Conference 1999, 1812-1816.
  • 4. Frecker M.I. (2003), Recent advances in optimization of smart structures and actuators, Journal of Intelligent Material Systems and Structures, 14, 4-5, 207-216.
  • 5. Garg P. (2010), A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm, International Journal of Network Security & Its Applications, 1, 1, 34-42.
  • 6. Goldberg D.E. (1989), Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Professional.
  • 7. Gorski P., Kozupa M. (2012), Variable Sound Insulation Structure with MFC Elements, Archives of Acoustics, 37, 1, 115-120.
  • 8. Greenhalgh D., Marshall S. (2000), Convergence criteria for genetic algorithms, SIAM Journal on Computing, 30, 1, 269-282.
  • 9. Hale J.M., Daraji A.H. (2012), Optimal placement of sensors and actuators for active vibration reduction of a flexible structure using a genetic algorithm based on modified H1, Journal of Physics: Conference Series, 382, 1, 12036-12041.
  • 10. Han J.H., Lee I. (1999), Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms, Smart Materials and Structures, 8, 2, 257-267.
  • 11. Kozupa M., Wiciak J. (2010), Active vibration control of rectangular plate with distributed piezoelements excited acoustically and mechanically, Acta Physica Polonica, 118, 1, 95-98.
  • 12. Kumar K.R., Narayanan S. (2007), The optimal location of piezoelectric actuators and sensors for vibration control of plates, Smart Materials and Structures, 16, 6, 2680-2691.
  • 13. Latos M., Pawełczyk M. (2010), Adaptive algorithms for enhancement of speech subject to a high-level noise, Archives of Acoustics, 35, 2, 203-212.
  • 14. Leissa A.W. (1969), Vibration of plates, NASA, Washington, DC, 41.
  • 15. Leniowska L. (2009), Modelling and vibration control of planar systems by the use of piezoelectric actuators, Archives of Acoustics, 34, 4, 507-519.
  • 16. Liu W., Hou Z., Demetriou M.A. (2006), A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial H2 measures, Mechanical Systems and Signal Processing, 20, 4, 881-895.
  • 17. Neri F., Cotta C., Moscato P. (2011), Handbook of memetic algorithms, Springer, 29.
  • 18. Mazur K., Pawełczyk M. (2011), Active noisevibration control using the filtered-reference LMS algorithm with compensation of vibrating plate temperature variation, Archives of Acoustics, 36, 1, 65-76.
  • 19. Mazur K., Pawełczyk M. (2013a), Hammerstein nonlinear active noise control with the filtered-error LMS algorithm, Archives of Acoustics, 38, 2, 197-203.
  • 20. Mazur K., Pawełczyk M. (2013b), Active Noise Control with a single nonlinear control filter for a vibrating plate with multiple actuators, Archives of Acoustics, 38, 4, 537-545.
  • 21. Padula S.L., Kincaid R.K. (1999), Optimization strategies for sensor and actuator placement, NASA 19990036166.
  • 22. Pawełczyk M. (2008), Active noise control a review of control-related problems, Archives of Acoustics, 33, 4, 509-520.
  • 23. Pawełczyk M., Wrona S. (2013), Optimal placement of actuators for active noise-vibration control with spillover effect suppression using a memetic algorithm, Proceedings of 20th International Congress on Sound and Vibration.
  • 24. Rao S. (2007), Vibration of continuous systems, Wiley.
  • 25. Sadri A.M., Wright J.R., Wynne R.J. (1999), Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms, Smart Materials and Structures, 8, 4, 490-498.
  • 26. Szemela K., Rdzanek W.P., RdzanekW.J. (2012), The Acoustic Pressure Radiated by a Vibrating Circular Plate within the Fraunhofer Zone of the Three-Wall Corner Region, Acta Physica Polonica Series A General Physics, 121, 1, 100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98b6658d-378a-4bb3-a664-a1852f35276c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.