PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antimicrobial properties of composite of anodized aluminum with electrodeposited silver nano-particles

Identyfikatory
Warianty tytułu
PL
Antydrobnoustrojowe właściwości kompozytowych powłok tlenkowych z nanocząstkami srebra wytwarzanych metodą anodowania na aluminium
Języki publikacji
EN
Abstrakty
EN
Aluminum foil was anodized in phosphoric acid bath and t hen composite have been prepared by electrodeposition silver into pores of anodic aluminum oxide. Morphology of obtained coatings were tested by SEM. These investigation revealed nanoparticeles visible on the top of anodized coatings. The specimens were tested for antibacterial and antifungical properties. Ali coatings revealed inhibiting or antimicrobial activities. Tests have been done against: Candida albicans, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus aureus MSSA.
PL
Metodą anodowania folii aluminiowej w roztworze kwasu fosforowego wytworzono kompozyt w postaci porowatej warstwy tlenkowej ze srebrem. Morfologia warstw była badana za pomocą mikroskopii SEM. Na badanych powierzchniach zaobserwowano nanowymiarowe cząstki srebra. Wytworzone próbki były badane w zakresie oddziaływań bakteryjnych i grzybiczych. Próbki wykazały antydrobnoustrojowe właściwości. Badania były przeprowadzone dla następujących szczepów bakterii: Candida albicans, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus aureus MSSA.
Rocznik
Tom
Strony
5--10
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Institute of Precision Mechanics, Warsaw
autor
  • Institute of Precision Mechanics, Warsaw
autor
  • Department of Medical Microbiology, Medical University of Warsaw
autor
  • Department of Medical Microbiology, Medical University of Warsaw
autor
  • Department of Microbiology, Infamt Jesus Teaching Hospital, Emergency and Trauma Centre in Warsaw
  • Faculty of Medicine Dentistry, Medical University of Warsaw
  • Department of Medical Microbiology, Medical University of Warsaw
Bibliografia
  • [1] Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S.: Strain specificity in antimicrobial activity of silver and copper nanoparticles. „Acta Biomater” 2008,4(3), p.707-716.
  • [2] Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y, Kim Y.K, Lee YS, Jeong D.H, Cho M.H.: Antimicrobial effects of silver nanoparticles. „Nanomedicine" 2007, 3(1), p. 95-101.
  • [3] Kar S., Bagchi B., Kundu B., Bhandary S., Basu R., Nandy P., Das S.: Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications. „Biochim. Biophys. Acta" 2014, 1840(11), p. 3264-3276.
  • [4] Feldheim D.L., Colby A.F. Jr: Metal nanoparticles. Synthesis, Characterization and Applications. Marcel Dekker, Inc., New York 2002.
  • [5] Jani A.M.M., Losie D., Voelcker N.H.: Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. „Progress in Materiał Science" 2013, 58, p. 636-704.
  • [6] Tomassi P., Buczko Z., Żółciak T.: Method of production of anodic aluminum oxide for nano technologies. „Inżynieria Materiałowa" 2014, 6, p. 556-559.
  • [7] Asoh H., Ono S.: Fabrication of ordered anodic nanoporous alumina layers and their application to nanotechnology, [in:] Electrocrystallization in Nano-technology, G. Staikov (ed.), Wiley 2007.
  • [8] Evans P., Hendren W.R., Atkinson R.,. Wurtz G.A, Dickson W., Zayats A.V., Pollard R.J.: Growth and properties of gold and nickel nanorods in thin film alumina. „Nanotechnology" 2006, 17, p. 5746-5753.
  • [9] Losie D., Shapter J.G., Mitchell J.G., Voelcker N.H.: Fabrication of gold nanorod arrays by templating from porous alumina. „Nanotechnology" 2005, 16, p.2275-2281.
  • [10] Randon J., Mardilovich P.P., Govyadinov A.N., Paterson R.: Computer Simulation of Inorganic Membrane Morphology. Part III: Anodic Alumina films and membranes. „J. Colloid and Interface Science" 1995, 169, p. 335-341.
  • [11] Parkhutik V.P., Shershulsky V.l.: Theoretical modelling of porous oxide growth on aluminium. „J. Phys. D-. Appl. Phys." 1992, 25, p. 1258-1263.
  • [12] Wernick S., Pinner R., Sheasby P.G.: Anodizing of aluminium: General notes and theory, [in:] The surface treatment and finishing of aluminium and its alloys. Finishing Publications Itd., 1987, p. 289-368.
  • [13] Chi G.J, Yao S.W., Fan J., Zhang W.G., Wang H.Z.: Antibacterial activity of anodized aluminum with deposited silver. „Surface and Coatings Technology" 2002, 157, p.162-165.
  • [14] Podstawy mikrobiologii lekarskiej, red. Jabłoński L., PZWL, Warszawa 1979.
  • [15] Tomassi P.: Electrochemical reaction to form composite layers aluminium oxide-metal. „Acta Phisica Polonica" 2002,102, p. 2015-2020.
  • [16] Prabhu S., Poulose E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. „International Nano Letters"2012, p. 2:32.
  • [17] Stevens K.N., Crespo-Biel O., van den Bosch E.E., Dias A.A., Knetsch M.L., Aldenhoff Y.B., van der Veen F.H., Maessen J.G., Stobberingh E.E., Koole L.H.: The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. „Biomaterials" 2009, 22, p. 3682-3690.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98b46df0-abfd-4a19-a715-c63745ebecf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.