Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoremediation of Lead Contaminated Soil Using Croton (Cordiaeumvariegatum) Plants

Treść / Zawartość
Warianty tytułu
Języki publikacji
The lead contamination of the environment affects the life of organisms, as the quality of the environment influences and determines the quality of living things, both plants and animals. Therefore, remediations need to be taken so that the polluted land could be repurposed for various activities safely. Phytoremediation is a method that employs plants to move, detach, or stabilize pollutants in the form of eitherorganic or inorganic compounds. In this study, the Croton (Codiaeum varigatum) plant was used as a phytoremediator planted in pots. Three pots were observed: 500 mg of Pb (NO3)2 was added to the first (T1) pot, 750 mg (T2) of Pb (NO3)2 was added up to the second (T2) pot, and no addition to the third (T0) pot. The parameters analyzed included plant biomass, the Pb content in plants, bioaccumulation factors, translocation factors, metal tolerance index, and photosynthetic pigment content. The results showed that Pb affected all of the analyzed parameters. Pb causes a decrease in the plant biomass and a downturn in chlorophyll a and b. The Pb accumulation in root > stem > leaf. The BAF value <1, the TF value <1 and the MTI value ranged 89.73–82.80%.
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
  • Doctoral Program Environmental Sciences of Diponegoro University, Semarang, Indonesia
  • Biology Department of Universitas Negeri Semarang, Indonesia
  • Faculty of Agricultural Technology of Soegijapranata Catholic University, Semarang, Indonesia
  • Faculty of Social and Political Science of Diponegoro University, Semarang, Indonesia
  • Environmental Engineering Department of Diponegoro University, Semarang, Indonesia
  • Faculty of Medicine of Diponegoro University, Semarang, Indonesia
  • 1. Ahmadpour, P., Ahmadpour, F., Mahmud, T.M.M., Abdu, A., Soleimani, M., Tayefeh, H.F. 2012. Phytoremediation of heavy metals: A green technology. African Journal of Biotechnology, 11, 14036–14043.
  • 2. Akeel, K. 2016. Lead Uptake, Accumulation and effects on plant growth of common reed (Pharagmites Australis (Cav) Trin. ex Steudel) plants in hydroponic culture, 3(2), Journal of Advances in Agricultural & Environmental Eng., 3(2), 2349–1531.
  • 3. Ali, H., Khan, E., Sajad, M.A. 2013. Phytoremediation of heavy metals concepts and applications. Chemosphere, 91, 869–88.
  • 4. Arisusanti R.J. and Purwani K.I. 2013. Pengaruh mikoriza Glomus fasciculatum terhadap akumulasi logam Timbal pada tanaman Dahlia pinnata dalam. Jurnal Sains dan Seni Pomits, 2(2), 2337–3520.
  • 5. Branzini A., González R.S., Zubillaga, M. 2012. Absorption and translocation of copper, zincand chromium by Sesbania virgata. J. Environ. Manag., 102, 50–54.
  • 6. Bu-Olayan and Thomas, B. 2009. Translocation and bioacumalation of trace metal in desert plants of Kuwait governorates. Research Journal of Environmetal Sciences, 3(5), 581–587.
  • 7. Cenkci S., Hakkıcigerci I., Yıldız M., Ozay C., Bozdag A., Terzi H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ. Exp. Bot., 67, 467–473.
  • 8. Gupta, A.K., Verma, S.K., Khan, K., Verma, R.K. 2013. Phytoremediation using aromatic plants: A sustainable approach for remediation of heavy metals polluted sites. Environmental Science and Technology, 47(18), 10115–10116.
  • 9. Iqbal N., Masood A., Nazar R., Syeed S., Khan N.A. 2010. Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agri. Sci. China, 9, 519–527.
  • 10. Jiang W., Liu D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol., 10, 40.
  • 11. Khan S., Hesham A.E,L., Qiao M., Rehman S., He J.Z. 2010. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res., 17, 288–296.
  • 12. Krzesłowska M., Rabeda I., Basinska A., Lewandowski M., Mellerowicz E.J., A. Napieralska, Samardakiewicz S., Wozny A. 2016. Pectinous cell wall thickenings formation e A common defense strategy of plants to cope with Pb. Environmental Polluion, 214, July, 354–361.
  • 13. Kumar, A., Prasad M., Sytar O. 2012. Lead toxicity, defence strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89, 1056–1065.
  • 14. Kumar, D.M.C. 2014. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems : an overview with special reference to phytoremediation International Journal of Environmental Science and technology, 843–872
  • 15. Liu, J., Zhou, N.V., Xing, Q., Sun, T., Ma, L.Q., Wang, S, .2008. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 151(1), 261–267.
  • 16. Malar, S., Shivandra Vikram, S., Favas, P., Perumal, V. 2014. Lead heavy metal toxicity induced changes on growth and antopxidantive anzymes level in watwr hyacinths (Eichhornia crassipes (Mart). Botanical Studies, 55(54), 2–11.
  • 17. Malecka A, Piechalak A, Morkunas I, Tomaszewka B. 2008. Accumulationof lead in root cell of Pisum sativum. Acta Physiol. Plant. 30(5), 629–637.
  • 18. Mangkoedihardjo Sarwoko, and Surahmaida. 2008. Jatropha curcas L. for phytoremediation of lead and cadmium polluted soil. World Applied Sciences Journal, 4(4), 519–522.
  • 19. Mani D., Kumar C., Patel N.K., Sivakumar D. 2012. Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. Int J. Environ. Sci. Technol.
  • 20. Parizanganeh, A.H., Bijnavand, V., Zamani, A.A. and Hajabolfath, A. 2012. Concentration, distribution and comparison of total and bioavailable heavy metals in top soils of Bonab district in Zanjan Province. Journal of Soil Science, 2, 123–132
  • 21. Piotrowska A., Bagjus A., Zylkiewics B.G., Zambrzycka E., 2009. Changes in Growth, Biochemical Components, and Antioxidant Activity in Aquatic Plant Wolfia Arrhiza (Lemnaceae) Exposed to Cadmium and Lead. Journal Springer Science.
  • 22. Sheoran, V., Sheoran, A., Poonia, P. 2011. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit. Rev. Environ. Sci. Technol., 41, 168–214.
  • 23. Sharma, P., Dubey, R.S. 2005. Lead toxicity in plants. Brazilia . J. Plant Physiology, 17(1), 35–52.
  • 24. Tauqeer H M, Shafaqat A, Muhammad R, Qasim A, Rashid S, Usman I, Rehan A, Muhajid F, Ghulam HA. 2016. Phytoremediation of heavy metal by Alternanthera bettrickiana . Ecotoxicol. Environ.Saf., 126, 138–146.
  • 25. United States Environmental Protection Agency, USEP. 2000. Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: State-ofthe-Practice. Draft for Final Review. EPA/542/R-00/ XXX. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington DC.
  • 26. Wang C. Tian Y., Wang, X., Geng, J., Jiang, J., Yu, H., Wang, C., 2010. Lead contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology, 19(6), 1130–1139.
  • 27. Wuana R.A. and Okieimen, F.E. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Communicationsin Soil Science and Plant Analysis, 42, 111–122.
  • 28. Zacchini, M. Pietrini, F. Mugnozza, G. S. Iori, V. Pietrosanti, L. Massacci, A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics . Water, Air, and Soil Pollution, 197, No. 1/4, 23–34.
  • 29. Zhang, M.-K., Liu, Z.-Y., Wang, H. 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7), 820–831.
  • 30. Zhou, C.F., Y.J. Wang, R. J. Sun, C. Liu, G.P. Fan, W.X. Qin C.C. Li and D.M. Zhou.2014. Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida. Environ Toxicol Chem., 33, 2351–2357.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.