PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The parallel tiled WZ factorization algorithm for multicore architectures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to investigate dense linear algebra algorithms on shared memory multicore architectures. The design and implementation of a parallel tiled WZ factorization algorithm which can fully exploit such architectures are presented. Three parallel implementations of the algorithm are studied. The first one relies only on exploiting multithreaded BLAS (basic linear algebra subprograms) operations. The second implementation, except for BLAS operations, employs the OpenMP standard to use the loop-level parallelism. The third implementation, except for BLAS operations, employs the OpenMP task directive with the depend clause. We report the computational performance and the speedup of the parallel tiled WZ factorization algorithm on shared memory multicore architectures for dense square diagonally dominant matrices. Then we compare our parallel implementations with the respective LU factorization from a vendor implemented LAPACK library. We also analyze the numerical accuracy. Two of our implementations can be achieved with near maximal theoretical speedup implied by Amdahl’s law.
Rocznik
Strony
407--419
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Mathematics, Marie Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland
  • Institute of Mathematics, Marie Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland
Bibliografia
  • [1] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P. and Tomov, S. (2009). Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects, Journal of Physics: Conference Series 180(1): 012037.
  • [2] Amdahl, G.M. (1967). Validity of the single processor approach to achieving large scale computing capabilities, Proceedings of the Spring Joint Computer Conference, AFIPS’67 (Spring), Atlantic City, NJ, USA, pp. 483–485.
  • [3] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D. (1999). LAPACK Users’ Guide, 3rd Edn., SIAM, Philadelphia, PA.
  • [4] Buttari, A., Langou, J., Kurzak, J. and Dongarra, J. (2009). A class of parallel tiled linear algebra algorithms for multicore architectures, Parallel Computing 35(1): 38–53.
  • [5] Bylina, B. (2018). The block WZ factorization, Journal of Computational and Applied Mathematics 331(C): 119–132.
  • [6] Bylina, B. and Bylina, J. (2007). Incomplete WZ factorization as an alternative method of preconditioning for solving Markov chains, in R. Wyrzykowski et al. (Eds.), PPAM, Lecture Notes in Computer Science, Vol. 4967, Springer, Berlin/Heidelberg, pp. 99–107.
  • [7] Bylina, B. and Bylina, J. (2009). Influence of preconditioning and blocking on accuracy in solving Markovian models, International Journal of Applied Mathematics and Computer Science 19(2): 207–217, DOI: 10.2478/v10006-009-0017-3.
  • [8] Bylina, B. and Bylina, J. (2015). Strategies of parallelizing nested loops on the multicore architectures on the example of the WZ factorization for the dense matrices, in M. Ganzha et al. (Eds.), Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, Vol. 5, IEEE, Piscataway, NJ, pp. 629–639.
  • [9] Donfack, S., Dongarra, J., Faverge, M., Gates, M., Kurzak, J., Luszczek, P. and Yamazaki, I. (2015). A survey of recent developments in parallel implementations of Gaussian elimination, Concurrency and Computation: Practice and Experience 27(5): 1292–1309.
  • [10] Dongarra, J., DuCroz, J., Duff, I.S. and Hammarling, S. (1990). A set of level-3 basic linear algebra subprograms, ACM Transactions on Mathematics Software 16(1): 1–17.
  • [11] Dongarra, J.J., Faverge, M., Ltaief, H. and Luszczek, P. (2013). Achieving numerical accuracy and high performance using recursive tile LU factorization, Concurrency and Computation: Practice and Experience 26(6): 1408–1431.
  • [12] Dumas, J.G., Gautier, T., Pernet, C., Roch, J.L. and Sultan, Z. (2016). Recursion based parallelization of exact dense linear algebra routines for Gaussian elimination, Parallel Computing 57: 235–249.
  • [13] Evans, D. and Hatzopoulos, M. (1979). A parallel linear system solver, International Journal of Computer Mathematics 7(3): 227–238.
  • [14] Flynn, M.J. (1972). Some computer organizations and their effectiveness, IEEE Transactions on Computers 21(9): 948–960.
  • [15] García, I., Merelo, J., Bruguera, J. and Zapata, E. (1990). Parallel quadrant interlocking factorization on hypercube computers, Parallel Computing 15(1–3): 87–100.
  • [16] Gustavson, F.G. (1997). Recursion leads to automatic variable blocking for dense linear-algebra algorithms, IBM Journal of Research and Development 41(6): 737–756.
  • [17] Intel (2019). Math Kernel Library, https://software.intel.com/en-us/mkl.
  • [18] Kurzak, J., Langou, J., Langou, C.D.J., Ltaief, H., Luszczek, P., Yarkhan, A., Haidar, A., Hoffman, J., Agullo, P.D.E., Buttari, A. and Hadri, B. (2010). PLASMA Users’ Guide: Parallel Linear Algebra Software for Multicore Architectures, Version 2.3., http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf.
  • [19] Marqués, M., Quintana-Ortí, G., Quintana-Ortí, E.S. and van de Geijn, R.A. (2011). Using desktop computers to solve large-scale dense linear algebra problems, The Journal of Supercomputing 58(2): 145–150.
  • [20] Rao, S.C.S. (1997). Existence and uniqueness of WZ factorization, Parallel Computing 23(8): 1129–1139.
  • [21] Yalamov, P. and Evans, D. (1995). The WZ matrix factorisation method, Parallel Computing 21(7): 1111–1120.
  • [22] Yarkhan, A., Kurzak, J., Luszczek, P. and Dongarra, J. (2017). Porting the PLASMA numerical library to the OpenMP standard, International Journal of Parallel Programming 45(3): 612–633, DOI:10.1007/s10766-016-0441-6.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98a71c00-c998-4162-a41c-da391f68cc71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.