PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective leaching of copper from near infrared sensor-based preconcentrated copper ores

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper oxide ore was pre-concentrated using near infrared sensor-based method and classified as product, middling and waste. The product and middling fractions were leached with ammonium chloride reagent. The effect of temperature, ammonium chloride concentration, solid- liquid ratio, stirring speed and particle size experimental variables were investigated. Mineralogical and chemical analysis of the ore fractions indicated that copper content was in accordance with the preconcentration strategy, with the product having a higher concentration than the middling and waste. The rate of copper extraction was found to be higher in the product than in the middling sample which further supports the near infrared classification, QEMSCAN®, X-ray diffraction, SEM mineralogical and X-ray florescence and Inductively coupled plasma Mass spectrometry chemical data. It was revealed that the leaching rate increases with increasing ammonium chloride concentration, temperature and decreasing ore particle size, stirring speed and solid-liquid ratio. Analysis of the experimental data by shrinking core model indicated that the dissolution kinetics follow the heterogeneous reaction model for the chemical control mechanism where the activation energies of 45.9 kJ/mol and 47.5 kJ/mol for product and middling fractions respectively were obtained. Characterization of the residue obtained at optimum leaching condition with X-ray diffraction suggests that copper was selectively leached when compared to the profile of the raw ore. The trace levels of metals associated with abundant X-ray diffraction profiles of residue found in the leachate further confirm the selective leaching process.
Rocznik
Strony
204--218
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Camborne School of Mines, University of Exeter, Penryn TR10 9FE, Cornwall, UK
  • Department of Chemistry, Federal University of Lafia, P.M.B. 146, Lafia, Nigeria
  • Department of Geology, Federal University of Lafia, P.M.B. 146, Lafia, Nigeria
  • Camborne School of Mines, University of Exeter, Penryn TR10 9FE, Cornwall, UK
Bibliografia
  • AWE, S.A., 2013. Antimony recovery from complex copper concentrates through hydro-and electrometallurgical processes. Doctoral thesis, Luleå University of technology, SE-97187 Luleå, Sweden. Pp. 2-20.
  • AWE, S.A., SANDSTRÖM, Å., 2010. Selective leaching of arsenic and antimony from a tetrahedrite rich complex sulphide concentrate using alkaline sulphide solution. Miner. Eng., 23(15), 1227-1236.
  • AYDOGAN, S., ARAS, A., CANBAZOGLU, M., 2005. Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chemical Engineering Journal. 114, 67-72.
  • BABA, A.A., ADEKOLA, F.A., 2010. Hydrometallurgical processing of a Nigerian sphalerite in hydrochloric acid:Characterization and dissolution kinetics. Hydrometallurgy, 101(1), 69-75.
  • BABA, A.A., AYINLA, K.I., ADEKOLA, F.A., BALE, R.B., GHOSH, M.K., ALABI, A.G.F., Sheik, A.R., FOLORUNSO, I.O., 2013. Hydrometallurgical application for treating a Nigerian chalcopyrite ore in chloride medium: Part I. Dissolution kinetics assessment. International Journal of Minerals, Metallurgy, and Materials, 20(11), 1021-1028.
  • BINGÖL, D., CANBAZOĞLU, M. 2004. Dissolution kinetics of malachite in sulphuric acid. Hydrometallurgy, 72(1), 159-165.
  • BINGÖL, D., CANBAZOĞLU, M., AYDOĞAN, S., 2005. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching. Hydrometallurgy, 76(1), 55-62.
  • CHMIELEWSKI, T., WÓDKA, J., AND IWACHÓW, Ł., 2009. Ammonia pressure leaching for lubin shale middlings. Physicochemical Problems of Mineral Processing, 43, 5-20.
  • EKMEKYAPAR, A., OYA, R., KÜNKÜL, A., 2003. Dissolution kinetics of an oxidized copper ore in ammonium chloride solution. Chemical and biochemical engineering quarterly, 17(4), 261-266.
  • EKMEKYAPAR, A., AKTAŞ, E., KÜNKÜL, A., DEMIRKIRAN, N., 2012. Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions. Metallurgical and Materials Transactions B, 43(4), 764-772.
  • FILIPPOU, D., ST-GERMAIN, P., GRAMMATIKOPOULOS, T., 2007. Recovery of metal values from copper-arsenic minerals and other related resources. Mineral Processing and Extractive Metallurgy Review. 28, 247-298.
  • IYAKWARI, S., GLASS, H.J. KOWALCZUK, P.B., 2013. Potential for near infrared sensor-based sorting of hydrothermally-formed minerals. J. Near Infrared Spectrosc., 21(3), 223-229.
  • IYAKWARI, S., HYLKE, J. 2015. Mineral preconcentration using near infrared sensor-based sorting. Physicochem. Probl. Miner. Process, 51(2), 661-674.
  • IYAKWARI, S., GLASS, H.J., GAVYN, K.R., AND KOWALCZUK, P.B., 2016. Application of near infrared sensors to preconcentration of hydrothermally-formed copper ore, Miner. Eng. 85, 148-167
  • KÜNKÜL, A., GÜLEZGIN, A., DEMIRKIRAN, N., 2013. Investigation of the use of ammonium acetate as an alternative lixiviant in the leaching of malachite ore. Chemical Industry and Chemical Engineering Quarterly, 19 (1), 25-34.
  • LAROUCHE, P., 2001. Minor elements in copper smelting and electrorefining. Master thesis, Mining and Metallurgical Engineering, McGill University, Montreal, Canada, pp. 8-12.
  • LEVENSPIEL, O.,1999. Chemical reaction engineering. Industrial & engineering chemistry research, 38 (11), 4140-4143.
  • LIU, W., TANG, M.T., TANG, C.B., HE, J., YANG, S.H., YANG, J.G., 2010. Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. Transactions of the Nonferrous Metals Society of China, 20(5), 910-917.
  • LIU, Z.X., YIN, Z.L., HU, H.P., CHEN, Q.Y., 2012b. Leaching kinetics of low-grade copper ore with high-alkality gangues in ammonia-ammonium sulphate solution. Journal of Central South University, 19, 77-84.
  • MEECH, J.A., PATERSON, J.G., 1980. The economics of beneficiating copper oxide ores prior to leaching. Engineering and Mining Journal (E&MJ), 181(8), 71-77.
  • MENA, M., OLSON, F.A., 1985. Leaching of chrysocolla with ammonia-ammonium carbonate solutions. Metallurgical Transactions B, 16 (3), 441-448
  • NORGATE, T., JAHANSHAHI, S. 2010. Low grade ores–Smelt, leach or concentrate? Minerals Engineering, 23(2), 65-73.
  • OCHROMOWICZ, K., JEZIOREK, M., WEJMAN, K., 2014. Copper (ii) extraction from ammonia leach solution. Physicochem. Probl. Miner. Process, 50(1), 327-335.
  • POPESCU, A. M., COJOCARU, A., DONATH, C., CONSTANTIN, V., 2013. Electrochemical study and electrodeposition of copper (I) in ionic liquid-reline. Chemical Research in Chinese Universities, 29(5), 991-997.
  • SUN, X.L., CHEN, B.Z., YANG, X.Y., LIU, Y.Y., 2009. Technological conditions and kinetics of leaching copper from complex copper oxide ore. J. of Central South University of Technology, 16, 936-941.
  • WANG, X., CHEN, Q., HU, H., YIN, Z., XIAO, Z. 2009. Solubility prediction of malachite in aqueous ammoniacal ammonium chloride solutions at 25 C. Hydrometallurgy, 99(3), 231-237.
  • WILLS, B.A., NAPIER-MUNN, T., 2006. Mineral processing technology: An Introduction to the practical aspects of ore treatment and mineral. Maryland heights, MO: Elsevier science & technology books, pp. 45-56.
  • WILLS, B.A., 2011.Mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann, pp. 34-51.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98a6d36d-4355-47ef-ba17-86df8641b7a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.