PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Pliocene Paludina Lake of Pannonian Basin : new evidence from northern Serbia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study from the Sremski Karlovci clay pit in northern Serbia sheds new light on the physicochemical conditions, ecology and evolution of the Paludina Lake – the Pliocene successor of the late Miocene giant Lake Pannon hosted by the Pannonian Basin. The multidisciplinary study combines sedimentology, sequence stratigraphy, biostratigraphy, palaeontology, palaeobotany, coal petrology, organic geochemistry and magnetic mineralogy. The sedimentary succession studied represents the lake margin at the foot of the Fruška Gora ridge. Sedimentary facies reveal minor and major lake-level changes, including a forced regression with fluvial valley incision in the succession middle part and the ultimate emergence and covering of the lake floor by Pleistocene loess. Mollusc and ostracod fauna indicates an oligohaline shallow cool-water environment, no deeper than 5–6 m, with an active inflow of spring water. The lake local depth during transgression maxima did not exceed 20 m. Palynological and geochemical analyses indicate a rich and diversified assemblage of gymnosperm plants with a contribution of angiosperms, weeds and microbial biomass in the peat-forming suboxic to oxic coastal swamp environment. Maceral analysis of organic matter shows a prevalence of huminite, accompanied richly by inertinite in lignite and by liptinite in clay. The Pleistocene shift to terrestrial semiarid environment resulted in oxidizing groundwater conditions, with the reddening of sediments around a fluctuating groundwater table and the diagenetic transformation of bacteria-derived greigite into magnetite. In regional stratigraphy, the occurrence of Viviparus neumayri Brusina in the lower half of the succession indicates the Lower Paludina Beds of Dacian Stage (early Zanclean age). Other gastropods and certain ostracodes indicate transition to the Middle Paludina Beds of lower Romanian Stage (late Zanclean–early Piacenzian). The upper half of the succession lacks age-diagnostic fossils and is considered to represent Middle Paludina Beds with a possible relic of Upper Paludina Beds at the top.
Rocznik
Strony
185--209
Opis fizyczny
Bibliogr. 117 poz., rys., tab., wykr.
Twórcy
autor
  • University of Belgrade, Faculty of Mining and Geology, Department of Regional Geology, Kamenička 6, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Department of Petrology and Geochemistry, Studentski Trg 16, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Department of Economic Geology, Đušina 7, 11000 Belgrade, Serbia
autor
  • Department of Applied Geosciences and Geophysics, University of Leoben, Peter-Tunner-Str. 5, A-8700 Leoben, Austria
  • University of Belgrade, Faculty of Mining and Geology, Department of Regional Geology, Kamenička 6, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Department of Geophysics, Đušina 7, 11000 Belgrade, Serbia
Bibliografia
  • 1. Allen, J. R. L., 1983. Studies in fluviatile sedimentation: Bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, 33: 237-293.
  • 2. Allen, J. R. L., 1985. Principles of Physical Sedimentology. Allen and Unwin, London, 272 pp.
  • 3. Anadón, P., Burjachs, F., Martin, M., Rodriguez-Lazaro, J., Robles, F., Utrilla, R. & Vazquez, A., 2002. Paleoenvironmental evolution of the Pliocene Villaroya Lake, northern Spain: A multidisciplinary approach. Sedimentary Geology, 148: 9-27.
  • 4. Andreescu, I., Codrea, V., Enache, C., Lubenescu, V., Munteanu, T., Petculescu, A., Stiuca, E. & Terzea, E., 2011. Reassessment of the Pliocene/Pleistocene (Neogene/Quaternary) boundary in the Dacian Basin (Eastern Paratethys, Romania). Muzeul Olteniei Craiova, Oltenia Studii °i comunicări, Ştiinţele Naturii, 27: 197-220.
  • 5. Andreescu, I., Codrea, V., Lubenescu, V., Munteanu, T., Petculescu, A., Stiuca, E. & Terzea, E., 2013. New developments in the Upper Pliocene - Pleistocene stratigraphic units of the Dacian Basin (Eastern Paratethys), Romania. Quaternary International, 284: 15-29.
  • 6. Anthony, J. W., Bideaux, R. A., Bladh, K. W. & Nichols, M. C. (eds), 1990. Handbook of Mineralogy, Volume I: Elements, Sulphides, Sulphosalts. Mineralogical Society of America, Chantilly, 265 pp.
  • 7. Babinszki, E., Marton, E., Marton, P. & Kiss, L. F., 2007. Widespread occurrence of greigite in the sediments of Lake Pannon: Implications for environment and magnetostratigraphy. Pala- eogeography Palaeoclimatology Palaeoecology, 252: 626-636.
  • 8. Bada, G., Horváth, F., Dôvényi, P., Szafián, P., Windhoffer, G. & Cloetingh, S., 2007. Present day stress field and tectonic inversion in the Pannonian Basin. Global and Planetary Change, 58: 165-180.
  • 9. Balla, Z., 1986. Palaeotectonic reconstruction of the central Alpine-Mediterranean belt for the Neogene. Tectonophysics, 127: 213-243.
  • 10. Basilici, G., 1997. Sedimentary facies in an extensional and deeplacustrine depositional system: the Pliocene Tiberino Basin, central Italy. Sedimentary Geology, 109: 73-94.
  • 11. Bechtel, A., Gruber, W., Sachsenhofer, R. F., Gratzer, R., Lücke, A. & Püttmann, W., 2003. Depositional environment of the Late Miocene Hausruck lignite (Alpine Foreland Basin): insights from petrography, organic geochemistry, and stable carbon isotopes. International Journal of Coal Geology, 53: 153-180.
  • 12. Bechtel, A., Sachsenhofer, R. F., Gratzer, R., Lücke, A. & Püttmann, W., 2002. Parameters determining the carbon isotopic composition of coal and fossil wood in the Early Miocene Oberdorf lignite seam (Styrian Basin, Austria). Organic Geochemistry, 33: 1001-1024.
  • 13. Böhme, M., Ilg, A. & Winklhofer, M., 2008. Late Miocene “washhouse” climate in Europe. Earth and Planetary Science Letters, 275: 393-401.
  • 14. Brusina, S., 1870. Monographie der Gattung Emmericia und Fossarulus. Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien, 1870: 925-938.
  • 15. Brusina, S., 1874. Fossile Binnen-Mollusken aus Dalmatien, Kroatien und Slavonien nebst einem Anhange. Deutsche vemehrte Ausgabe der kroatischen im Rad der südslav. Akademie der Wissenschaften und Künste in Agram erschienen Abhandlung. Actienbuchdruckerei, Agram, 143 pp.
  • 16. Brusina, S., 1878. Molluscorum fossilium species novae et emendatae, in tellure tertiaria Dalmatiae, Croatiae et Slavoniae inventae. Journal de Conchyliologie, 1878: 1-10.
  • 17. Brusina, S., 1882. Orygoceras, eine neue Gasteropoden-Gattung der Melanopsiden-Mergel Dalmatiens. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 2: 33-46.
  • 18. Brusina, S., 1884. Die Neritodonta Dalmatiens und Slavoniens nebst allerlei malakologischen Bemerkungen. Jahrbücher der deutschen Malakozoologischen Gesellschaft, 11: 1-102.
  • 19. Brusina, S., 1896. Neogenska zbirka iz Ugarske, Hrvatske, Slavonije i Dalmacije na Budimpestanskoj izlozbi. Hrvatsko Naravoslovno Drustvo, 9: 98-150. [In Croatian.]
  • 20. Brusina, S., 1902. Iconographia Molluscorum Fossilium in Tellure Tertiaria Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzegovinae, Serbiae and Bulgariae inventorum. Officina Societá Typographicae, Agram, 10 pp.
  • 21. Catuneanu, A., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375 pp.
  • 22. Chaffee, A. L., Hoover, D. S., Johns, R. B. & Schweighard, F. K., 1986. Biological markers extractable from coal. In: Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 311-345.
  • 23. Ciculic-Trifunovic, M. & Rakić, M., 1971. Basic Geological Map 1:100 000, Sheet Novi Sad, with Explanatory Book. Savezni Geološki Zavod, Beograd, 52 pp. [In Serbian.]
  • 24. Cloetingh, S., Bada, G., Matenco, L., Lankreijer, A., Horvath, F. & Dinu, C., 2006. Modes of basin (de)formation, lithospheric strength and vertical motions in the Pannonian-Carpathian system: inferences from thermo-mechanical modelling. In: Gee, D. G. & Stephenson, R. A. (eds), European Lithosphere Dynamics. Geological Society of London, Memoirs, 32: 207221.
  • 25. Cohen, A. S., 2003. Paleolimnology. Oxford University Press, Oxford, 500 pp.
  • 26. Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199-204.
  • 27. Crenshaw, M. A., 1980. Mechanisms of shell formation and dissolution. In: Rhoads, D. C., Lutz, R. A. (eds), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York, pp. 115-132.
  • 28. Danielopol, D. L., Handl, M. & Yu, Y., 1993. Benthic ostracods in the pre-Alpine deep Lake Mondsee: notes on the origin and distribution. In: McKenzie, K. G. & Jones, P. J. (eds), Ostracoda in the Earth and Life Sciences. Proceedings of the 11th International Symposium on Ostracoda, Warnambool (Victoria, Australia). A. A. Balkema, Rotterdam, pp. 465-480.
  • 29. Dekkers, M. J., Passier, H. F. & Schoonen, M. A. A., 2000. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)-II. High- and low-temperature characteristics. Geophysical Journal International, 141: 809-819.
  • 30. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272: 216-222.
  • 31. Dzou, L. I. P., Noble, R. A. & Senftle, J. T., 1995. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Organic Geochemistry, 23: 681-697.
  • 32. Ficken, K. J., Li, B., Swain, D. L. & Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31: 745-749.
  • 33. Fodor, L., Csontos, L., Bada, G., Györfi, I. & Benkovics, L., 1999. Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: anew synthesis of paleostress data. In: Durand, B., Jolivet, L., Horvath, F. & Seranne, M. (eds), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society of London, Special Publication, 156: 295-334.
  • 34. Fontannes, F., 1886. Contribution a la fauna malacologique des terrains Neogenes de la Roumanie. Archives du Muséum d’Historie natturelle de Lyon, 4: 1-49.
  • 35. Gagić, N. & Sokac, A., 1970. Ostracod fauna from the Paludina beds of Vukomericke gorice. Proceedings of VII Congress of Geologists of Yugoslavia, 1: 131-148 [In Serbian.]
  • 36. Goossens, H., de Leeuw, J. W., Schenck, P. A. & Brassell, S. C., 1984. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature, 312: 440-442.
  • 37. Haberer, M. R., Mangelsdorf, K., Wilkes, H. & Horsfield, B., 2006. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada). Organic Geochemistry, 37: 519-538.
  • 38. Harzhauser, M. & Mandic, O., 2008. Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology, 260: 417-434.
  • 39. Helland-Hansen, W., 2009. Towards the standardization of sequence stratigraphy: Discussion. Earth-Science Reviews, 94: 95-97.
  • 40. Herbich, F. & Neumayr, M., 1875. Beitrage zur Kenntnis fossiler Binnenfaunen, VII. Die Susswasserablagerungen im sudostlichen Siebenburgen. Jahrbuch der kaiserlich-königlichen geologischen Reichsanstalt, 25: 401-431.
  • 41. Horváth, F., Bada, G., Szafian, P., Tari, G., Adam, A. & Cloe- tingh, S., 2006. Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee, D. G. & Stephenson, R. A. (eds), European Lithosphere Dynamics. Geological Society of London, Memoir, 32: 191-206.
  • 42. Hughes, W. B., Holba, A. G. & Dzou, L. I. P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59: 3581-3598.
  • 43. Ichaso, A. A. & Dalrymple, R. W., 2009. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology, 37: 539-542.
  • 44. Ielpi, A., 2012. Anatomy of major coal successions: Facies analysis and sequence architecture of a brown coal-bearing valley fill to lacustrine tract (Upper Valdarno Basin, Northern Apennines, Italy). Sedimentary Geology, 265-266: 163-181.
  • 45. ICCP (International Committee for Coal Petrology), 2001. The new inertinite classification (ICCP System 1994). Fuel, 80: 459-471.
  • 46. ISO, 2009a. Methods for the Petrographic Analysis of Coals, Part 2: Methods of Preparing Coal Samples. Publication 7404-2, International Organization for Standardization, Geneva, 12 pp.
  • 47. ISO, 2009b. Methods for the Petrographic Analysis of Coals, Part 3: Method of Determining Maceral Group Composition. Publication 7404-3, International Organization for Standardization, Geneva, 7 pp.
  • 48. ISO, 2009c. Methods for the Petrographic Analysis of Coals, Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. Publication 7404-5, International Organization for Standardization, Geneva, 14 pp.
  • 49. ISO, 2005. Classification of Coal. Publication 11760, International Organization for Standardization, Geneva, 9 pp.
  • 50. Jankovic, P., 1970. Paludina Beds in Vojvodina. In: Proceedings of the VII Congress of Geologists of Yugoslavia, 1: 103-115. [In Serbian.]
  • 51. Jankovic, P., 1977. Paludina Beds. In: Petkovic, K. (ed.), Geology of Serbia, Stratigraphy of Cainozoic, Part II-3. University of Belgrade, Belgrade, pp. 326-330. [In Serbian.]
  • 52. Jankovic, P., 1995. Äquivalente der Dazischen Stufe in Vojvodina, Jugoslawien (ältere Paludinenschichten). In: Marinescu, F. & Papaianopol, I. (eds), Chronostratigraphie und Neostratotypen, BandIX: Dacien. Academia Română, Bucuresti, pp. 88-92.
  • 53. Kalkreuth, W., Keuser, C., Fowler, M., Li, M., McIntyre, D., Püttmann, W. & Richardson, R., 1998. The petrology, organic geochemistry and palynology of Tertiary age Eureka Sound Group coals, Arctic Canada. Organic Geochemistry, 29: 799-809.
  • 54. Krs, M., Novak, F., Krsova, M., Pruner, P., Koulikova, L. & Jansa, J., 1992. Magnetic properties and metastability of greigitesmythite mineralization brown-coal basins of the Krusna Hory Piedmont, Bohemia. Physics of the Earth and Planetary Interiors, 70: 273-287.
  • 55. Krstic, N., 2006. Pliocene Ostracodes of the Paludinian Layers in Pannonian Plain, Serbian Part. Herald of the Natural History Museum, Belgrade, 401 pp.
  • 56. Krstic, N. & Kneževic, S., 2003. Succession of the fauna of the Paludinian Layers. In: Papaianopol, I., Marinescu, F., Krstic, N. & Macalet, R. (eds), Chronostratigraphie und Neostratotypen, Neogen der Zentralen Paratethys, BandX: Romanian. Academia Română, Bucuresti, pp. 83-92.
  • 57. Krstic, N., Savic, Lj. & Jovanovic, G., 2013. The Neogene lakes on the Balkan land. Annales Géologiques de la Peninsule Balkanique, 73: 37-60.
  • 58. Lesic, V., Márton, E. & Cvetkov, V., 2007. Paleomagnetic detection of Tertiary rotations in the Southern Pannonian Basin (Fruška Gora). Geologica Carpathica, 58/2: 185-193.
  • 59. Li, X., Liu, W., Zhang, L. & Sun, Z., 2010. Distribution of Recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecological Indicators, 10: 880-890.
  • 60. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17: 159-162.
  • 61. Mackenzie, A. S., Patience, R. L. & Maxwell, J. R., 1981. Molecular changes and the maturation of sedimentary organic matter. In: Atkinson, G. & Zuckermann, J. J. (eds), Origin and Chemistry of Petroleum. Proceedings of the 3rd Annual Karcher Symposium. Pergamon Press, Oxford, pp. 1-31.
  • 62. Magyar, I., Geary, D. H. & Müller, P., 1999 Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography Palaeoclimatology Palaeoecology, 147: 151-167.
  • 63. Magyar, I., Radivojevic, D., Sztanó, O., Synak, R., Ujszászi, K. & Pócsik, M., 2013. Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103: 168- 173.
  • 64. Mandic, O., de Leeuw, A., Bulic, J., Kuiper, K. F., Krijgsman, W. & Jurišic-Polšak, Z., 2012. Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia. International Journal of Earth Science, 101: 1033-1046.
  • 65. Marovic, M., Toljic, M., Rundic, L. & Milivojevic, J., 2007. Neoalpine Tectonics of Serbia. Serbian Geological Society, Belgrade, 87 pp.
  • 66. Márton, E., Tomljenovic, B., Pavelic, D., Pethe, M., Avani, R. & Jelen, B., 2012. Late Miocene clay-rich sediments from the Croatian and Slovenian parts of the Pannonian Basin - paleomagnetisam, magnetic mineral and magnetic fabric. In: Pipík, R. (ed.), Abstracts and Guide of Excursion, 4th International Workshop on the Neogene from the Central and South-Eastern Europe (Banská Bystrica). Geological Institute, Slovak Academy of Sciences, Bratislava, pp. 26-27.
  • 67. Matsumoto, G. I., Akiyama, M., Watanuki, K. & Torii, T., 1990. Unusual distribution of longchain n-alkanes and n-alkenes in Antarctic soil. Organic Geochemistry, 15: 403-412.
  • 68. Meisch, C., 2000. Crustacea: Ostracoda. In: Schwoerbel, J. & Zwick, P. (eds), Süßwasserfauna von Mitteleuropa. Band 8(3). Spektrum Akademischer Verlag, Heidelberg, 522 pp.
  • 69. Meisch, C. & Wouters, K., 2004. Valve surface structure of Candona neglecta Sars, 1887 (Crustacea, Ostracoda). Studia Quaternaria, 21: 15-18.
  • 70. Miall, A. D., 1996. The Geology of Fluvial Deposits. SpringerVerlag, Berlin, 582 pp.
  • 71. Morozova, G. & Smith, N. D., 2003. Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsion. Sedimentary Geology, 157: 15-29
  • 72. Nakamura, H., Sawada, K. & Takahashi, M., 2010. Aliphatic and aromatic terpenoid biomarkers in Cretaceous and Paleogene angiosperm fossils from Japan. Organic Geochemistry, 41: 975-980.
  • 73. Neumayr, M., 1869. Beiträge zur Kenntniss fossiler Binnenfaunen. Jahrbuch der Kaiserlich-Königlichen Geologische Reichsanstalt, 1869/3: 355-382.
  • 74. Neumayr, M., 1880. Tertiäre Binnenmollusken aus Bosnien und der Hercegovina. Jahrbuch der Kaiserlich-Königlichen Geologische Reichsanstalt, 1880: 463-486.
  • 75. Neumayr, M. & Paul, C. M., 1875. Die Congerien- und Paludinenschichten Slavoniens und deren Faunen. Ein Beitrag zur Descendenz-Theorie. Abhandlungen der Kaiserlich-Königlichen Geologische Reichsanstalt, 7: 1-111.
  • 76. Nott, C. J., Xie, S., Avsejs, L. A., Maddy, D., Chambers, F. M. & Evershed, R. P., 2000. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climate variation. Organic Geochemistry, 31: 231-235.
  • 77. Otto, A. & Simoneit, B. R. T., 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz Formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65; 3505-3527.
  • 78. Otto, A., Walther, H. & Püttmann, W., 1997. Sesqui- and diterpenoid biomarkers preserved in Taxodium-rich Oligocene oxbow lake clays, Weisselster Basin, Germany. Organic Geochemistry, 26: 105-115.
  • 79. Otto, A. & Wilde, V., 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers - a review. The Botanical Review, 67: 141-238.
  • 80. Peters, K. E., Walters, J. M. & Moldowan, J. M., 2005. The Biomarker Guide. Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, pp. 475-1155.
  • 81. Petkovic, K., Ciculic-Trifunovic, M., Pašic, M. & Rakić, M., 1976. Fruška Gora - Monographic Review of Geological Materials and Tectonic Assembly. Matica Srpska, Novi Sad, 267 pp. [In Serbian.]
  • 82. Philp, R. P., 1985. Fossil Fuel Biomarkers: Applications and Spectra. Methods in Geochemistry and Geophysics. Elsevier, Amsterdam, 294 pp.
  • 83. Posilovic, H. & Bajraktarevic, Z., 2010. Functional morphological analysis of evolution of ribbing in Pliocene viviparid shells from Croatia. Lethaia, 43: 457-464.
  • 84. Potter, P. E., Maynard, J. B. & Depetris, P. J., 2005. Mud and Mudstones. Springer-Verlag, New York, 298 pp.
  • 85. Radivojevic, D., Magyar, I., Ter Borgh, M. & Rundic, L., 2014. The Lake Pannon - Serbian side of the story. In: Proceedings of XVI Serbian Geological Congress. Serbian Academy of Sciences, Belgrade, pp. 54-60.
  • 86. Radke, M., Willsch, H. & Welte, D. H., 1980. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry, 52: 406- 411.
  • 87. Reynolds, R. L., Rosenbaum, J. G., van Metre, P., Tuttle, M., Callender, E. & Goldin, A., 1999. Greigite as an indicator of drought-the 1912-1994 sediment magnetic record from White Rock Lake. Dallas, Texas, USA. Journal of Paleolimnology, 21: 193-206.
  • 88. Reynolds, R. L., Tuttle, M. L., Rice, C. A., Fishman, N. S., Karachewski, J. A. & Sherman, D. M., 1994. Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope Basin, Alaska. American Journal ofScience, 294: 485528.
  • 89. Rögl, F., 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography. Geologica Carpathica, 50: 339-349.
  • 90. Roberts, A. P., Chang, L., Rowan, C. J., Horng, C.-S. & Florindo F., 2011. Magnetic properties of sedimentary greigite (Fe3S4): An update. Reviews of Geophysics, 49: 1-46.
  • 91. Roberts, A. P. & Turner, G. M., 1993. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters, 115: 257-273.
  • 92. Rundic, L., Vasic, N., Kneževic, S. & Cvetkov, V., 2011. The Pliocene sediments from the northern flank of Fruška Gora (northern Serbia) - A new approach based on an integrated study. In: Pipík, R. (ed.), Abstracts and Guide of Excursion, 4th International Workshop on the Neogene from the Central and South-Eastern Europe (Banská Bystrica). Geological Institute, Slovak Academy of Sciences, Bratislava, pp. 38-39.
  • 93. Sacchi, M. & Horvath, F., 2002. Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys). EGU Stephan Mueller Special Publication Series, 3: 79-94.
  • 94. Sagnotti, L., Cascella, A., Ciaranfi, N., Marc, P., Maiorano, P., Marino, M. & Taddeucci J., 2010. Rock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): evidence for late diagenetic growth of greigite and implications for magnetostratigraphy. Geophysical Journal International, 180: 1049-1066.
  • 95. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101: 139-183.
  • 96. Skinner, B. J., Erd, R. C. & Grimaldi, F. S., 1964. Greigite, the thio-spinal of iron; a new mineral. American Mineralogist, 49: 543-555.
  • 97. Steenbrink, J., Hilgen, F. J., Krijgsman, W., Wijbrans, J. R. & Meulenkamp, J. E., 2006. Late Miocene to Early Pliocene depositional history of the intramontane Florina-Ptolemais- Servia Basin, NW Greece: Interplay between orbital forcing and tectonics. Palaeogeography Palaeoclimatology Palaeo- ecology, 238: 151-178.
  • 98. Stefanova, M., Markova, K., Marinov, S. & Simoneit, B. R. T., 2005. Molecular indicators for coal-forming vegetation of the Miocene Chukurovo lignite, Bulgaria. Fuel, 84: 1830-1838.
  • 99. Stefanova, M., Oros, D. R., Otto, A. & Simoneit, B. R. T., 2002. Polar aromatic biomarkers in the Miocene Maritza-East lignite, Bulgaria. Organic Geochemistry, 33: 1079-1091.
  • 100. Sztanó, O., Szafián, P., Magyar, I., Horányi, A., Bada, G., Hughes, D. W., Hoyer, D. L. & Wallis, R. J., 2013. Aggradation and progadation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon, Mako Trough, Pannonian Basin, SE Hungary. Global and Planetary Change, 103: 149-167.
  • 101. Sztanó, O., Sebe, K., Csillag, G. & Magyar, I., 2015. Turbidites as indicators of paleotopography, Upper Miocene Lake Pannon, Western Mecsek Mountains (Hungary). Geologica Carpathica, 66: 331-344.
  • 102. Sykorova, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G. H. & Flores, D., 2005. Classification of huminite-ICCP System 1994. International Journal of Coal Geology, 62: 85-106.
  • 103. Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R. & Robert, P., 1998. Organic Petrology. Gebrüder Borntraeger, Berlin, 704 pp.
  • 104. Ten Haven, H. L., de Leeuw, J. W., Rullkötter, J. & Sinninghe Damsté, J. S., 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330: 641643.
  • 105. Ter Borgh, M., Vasiliev, I., Stoica, M., Kneževic, S., Matenco, L., Krijgsman, W., Rundic, L. and Cloetingh, S., 2013. The isolation of the Pannonian basin (Central Paratethys): new constraints from magneto- and biostratigraphy. Global and Planetary Change, 103: 99-118.
  • 106. Tissot, B. T. & Welte, D. H., 1984. Petroleum Formation and Occurrences. Second Edition, Springer-Verlag, Berlin, 699 pp.
  • 107. Toljic, M., Matenco, L., Ducea, M. N., Stojadinovic, U., Mili- vojevic, J. & Beric, N., 2013. The evolution of a key segment in the Europe-Adria collision: The Fruška Gora of northern Serbia. Global and Planetary Change, 103: 39-62.
  • 108. Traykovski, P., Geyer, W. R., Irish, J. D. & Lynch, J. F., 2000. The role of wave-induced density-driven fluid mud flows for cross shelf transport on the Eel River continental shelf. Continental Shelf Research, 20: 2113-2140.
  • 109. Vasiliev, I., Dekkers, J. M., Krijgsman, W., Franke, C., Longereis. B. G. & Mullender, A. T., 2007. Early diagenetic greigite as a recorder of the paleomagnetic signal in Miocene-Pliocene sedimentary rocks of the Carpathian Foredeep (Romania). Geophysical Journal International, 171: 613-629.
  • 110. Volkman, J. K. & Maxwell, J. R., 1986. Acyclic isoprenoids as biological markers. In: Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 1-42.
  • 111. Vu, T. T. A., Zink, K.-G., Mangelsdorf, K., Sykes, R., Wilkes, H. & Horsfield, B., 2009. Changes in bulk properties and molecular compositions within New Zealand Coal Band solvent extracts from early diagenetic to catagenetic maturity levels. Organic Geochemistry, 40: 963-977.
  • 112. Walker, T. R., 1967. Formation of red beds in modern and ancient deserts. Geological Society of America Bulletin, 78: 353-368.
  • 113. Walker, T. R., 1973. Intrastratal alterations in the Fountain Formation (Pennsylvanian age), Denver area, Colorado. Geological Society of America, Southeastern Section, Abstracts with Program, 5: 917-920.
  • 114. Walker, T. R., 1974. Formation of red beds in moist tropical climates: a hypothesis. Geological Society of America Bulletin, 85: 633-338.
  • 115. Walker, T. R. & Honea, R. H., 1969. Iron content of modern deposits in the Sonoran Desert: a contribution to the origin of red beds. Geological Society of America Bulletin, 80: 535544.
  • 116. Wilkinson, I. P., Bubikyan, S. A. & Gulakyan, S. Z., 2005. The impact of late Holocene environmental change on lacustrine Ostracoda in Armenia. Palaeogeography Palaeoclimatology Palaeoecology, 225: 187-202.
  • 117. Wolff, G. A., Ruskin, N. & Marshall, J. D., 1992. Biogeochemistry of an early diagenetic concretion from the Birchi Bed (L. Lias, W. Dorset, U.K.). Organic Geochemistry, 19: 431-444.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98a64575-6432-45e8-902e-631d35a82b47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.