PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of the pathological bile flow in the duct with a calculus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present paper is to develop an analytical model for description of the pathological bile flow in the major duodenal papilla duct with a calculus. The problem is separated into two parts. The first part deals with determination of bile behaviour and constitutive relation parameters of the pathological bile. The viscosity vs. shear rate, the viscosity vs. time, and shear stress vs. shear rate dependences are obtained for different types of bile taken from patients of different age and sex. As a result, the approximation of curves described by the Casson equation was obtained. It was shown that the pathological bile is a thixotropic non-Newtonian fluid. The second part is directly related to modelling of the bile flow in the duct with a calculus. As a result of solving the problem, the bile velocity profile, flow rate vs. time, and bile pressure vs. calculus radius were obtained. The dependences obtained may play an important role in the assessment of an indication to operation.
Rocznik
Strony
9--17
Opis fizyczny
Bibliogr. 40 poz., rys. wykr.
Twórcy
  • Department of Theoretical Mechanics, Perm National Research Polytechnic University, Perm, Russia
  • Department of Theoretical Mechanics, Perm National Research Polytechnic University, Perm, Russia
  • Department of General Surgery, Academician E.A. Wagner Perm State Medical Academy, Perm, Russia
  • Department of General Surgery, Academician E.A. Wagner Perm State Medical Academy, Perm, Russia
Bibliografia
  • [1] BRUGGE W.R., BRAND D.L., ATKINS H.L., Gallbladder dyskinesia in chronic acalculous cholecystitis, Digest. Dis. Sci., 1986, Vol. 31, 461–468.
  • [2] KRATZER W., MASON R.A., KACHELE V., Prevalence of gallstones in sonographic surveys worldwide, J. Clin. Ultrasound, 1999, Vol. 27, 1–7.
  • [3] VINOGRADOV V.V., Diseases of the Vater’s papilla, (in Russian), Nauka: Moscow, 1962.
  • [4] EDEMSKIY A.I., EDEMSKIY D.A., Major duodenal papilla’s pathology, (in Russian), Surgery Bulletin, 2002, Vol. 7, 35–42.
  • [5] HESS W., Die Erkrankungen der Gallenwege und des Pancreas, (in German), Stuttgart, 1961.
  • [6] LIANG T.B., LIU Y., BAI X., YU J., CHEN W., Sphincter of Oddi laxity: an important factor in hepatolithiasis, World J. Gastroentero., 2010, Vol. 16(8), 1014–1018.
  • [7] MIYACHI A., KIKUYAMA M., MATSUBAYASHI Y., Successful treatment of pancreaticopleural fistula by nasopancreatic drainage and endoscopic removal of pancreatic duct calculi: a case report, Gastrointest. Endosc., 2004, Vol. 59, 454–457.
  • [8] CICALA M., HABIB F.I., FIOCCA F., PALLOTTA N., CORAZZIARI E., Increased sphincter of Oddi basal pressure in patients affected by gall stone disease: a role for biliary stasis and colicky pain?, Gut, 2001, Vol. 48, 414–417.
  • [9] LI W.G., LUO X.Y., HILL N.A., SMYTHE A., CHIN S.B., JOHNSON A.G., BIRD N.C., Correlation of mechanical factors and gallbladder pain, J. Comput. Math. Methods Med., 2008, Vol. 9, 27–45.
  • [10] RASTOGI A., SLIVKA A., MOSER A.J., WALD R., Controversies concerning pathophysiology and management of acalculous biliary-type abdominal pain, Digest. Dis. Sci., 2005, Vol. 50, 1391–1401.
  • [11] CAROLI J., CORSOS V., La dilatation congetale des voies biliaris intra-hepatiques, (in French), Rev. Med. Chir. Mal. Foie, 1964, vol. 39, pp. 1–15.
  • [12] MALLET-GUY P., ROSE J., Pre-operative manometry and radiology in biliary tract disorders, Br. J. Surg., 1956, Vol. 44, 128–136.
  • [13] AL-ATABI M.T., CHIN S.B., LUO X.Y., Flow structure in circular tubes with segmental baffles, JFVIP, 2005, Vol. 12, pp. 301–311.
  • [14] AL-ATABI M.T., OOI, R.C., LUO, X.Y., CHIN, S.B., BIRD N., Computational analysis of the flow of bile in human cystic duct, Med. Eng. Phys., 2012, Vol. 34, 1177–1183.
  • [15] LI W.G., LUO X.Y., JOHNSON A.G., HILL N.A., BIRD N., CHIN S.B., One-dimensional models of the human biliary system, J. Biomech. Eng. – T ASME, 2007, Vol. 129, 164–173.
  • [16] OOI R.C., LUO X.Y., CHIN S.B., JOHNSON A.G., BIRD N.C., The flow of bile in the human cystic duct, J. Biomech., 2004, Vol. 37, 1913–1922.
  • [17] KUCHUMOV А.G., NYASHIN Y.I., SAMARTSEV V.A., GAVRILOV V.A., MESNARD M., Biomechanical approach to biliary system modelling as a step towards «Virtual physiological human» project, Russian Journal of Biomechanics, 2011, Vol. 15, 28–36.
  • [18] HUNTER P., COVENEY P., BONO B., DIAZ V., FENNER J., FRANGI A., HARRIS P., HOSE R., KOHL P., LAWFORD P., MCCORMACK K., MENDES M., OMHOLT S., QUARTERONI A., SKÅR J., TEGNER J., RANDALL T., TOLLIS I., TSAMARDINOS I., VAN BEEK J., VICECONTI M., A vision and strategy for the virtual physiological human in 2010 and beyond, Philosophical Transactions of the Royal Society A. Mathematical, Physical & Engineering Sciences, 2010, Vol. 368, 2595–2614.
  • [19] KOHL P., NOBLE D., Systems biology and the virtual physiological human, Mol. Syst. Biol., 2009, Vol. 5, 292–298.
  • [20] VICECONTI M., CLAPWORTHY G., VAN SINT JAN S., The Virtual Physiological Human – a European initiative for in silico human modelling, J. Physiol. Sci., 2008, Vol. 58, 441–446.
  • [21] GRIZZI F., CHRIVA-INTERNATI M., The complexity of anatomical systems, Theor. Biol. Med. Model., 2010, Vol. 14, 1–9.
  • [22] WESTON A.D., HOOD L., Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine, J. Proteome. Res., 2004, Vol. 3, 179–196.
  • [23] HOFMANN A.F., Biliary secretion and excretion in health and disease: current concepts, Ann. Hepatol., 2007, Vol. 6, 15–27.
  • [24] KUNE G., The influence of structure and function in the surgery of the biliary tract, Ann. R. Coll. Surg. Engl., 1970, Vol. 47, 78–91.
  • [25] OTTO W.J., SCOTT G.W., RODKIEWICZ C., A comparison of resistances to flow through the cystic duct and the sphincter of Oddi, J. Surg. Res., 1979, Vol. 27, 68–72
  • [26] PITT H., ROSLYN J., KUCHENBECKER S., DOTY J., DENBESTEN L., The role of cystic duct resistance in the pathogenesis of cholesterol gallstones, J. Surg. Res., 1981, Vol. 30, 508–514.
  • [27] CSENDES A., KRUSE A., FUNCH-JENSEN P., OSTER M.J., ORNSHOLT J., AMDRUP E., Pressure measurements in the biliary and pancreatic duct systems in controls and in patients with gallstones, previous cholecystectomy or common bile duct stones, Gastroenterology, 1979, Vol. 77, 1203–1210.
  • [28] HORIGUCHI S., KAMISAWA T., Major duodenal papilla and its normal anatomy, Dig. Surg., 2010, Vol. 27, 90–93.
  • [29] BUCHNER A.M., SONNENBERG A., Factors influencing the prevalence of gallstones in liver disease: the beneficial and harmful influences of alcohol, AJG, 2002, Vol. 97, 905–909.
  • [30] GAVRILENKO S.L., VASIN R.A., SHILKO S.V., A method for determining flow and rheological constants of viscoplastic biomaterials, Part I, Russian Journal of Biomechanics, 2002, Vol. 6, 90–96.
  • [31] SZWAJCZAK E., Dependence of hyaluronan aqueous solution viscosity on external fields, Part II, Russian Journal of Biomechanics, 2004, Vol. 8, 89–93.
  • [32] FUNG Y.C., Biodynamics: circulation, Springer-Verlag, 1984.
  • [33] CURRIE I.G., Fundamental mechanics of fluids, McGraw-Hill, 1974.
  • [34] TEILUM D., In vivo measurement of the length of the sphincter Oddi, Endoscopy, 1991, Vol. 23, 114–116.
  • [35] BLAGOJEVIC M., NIKOLIC A., ŽIVKOVIC M., ŽIVKOVIC M., STANKOVIC G. Influence of blocks’ topologies on endothelial shear stress observed in CFD analysis of artery bifurcation, Acta of Bioengineering and Biomechanics, 2013, Vol. 15(1), 97–104.
  • [36] MARIUNAS M., KUZBORSKA Z., Influence of load magnitude and duration on the relationship between human arterial blood pressure and flow rate, Acta of Bioengineering and Biomechanics, 2011, Vol. 13(2), 67–72.
  • [37] TSE K.M., CHIU P., LEE H.P., HO P., Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations, J. of Biomechanics, 2011, Vol. 44(5), 827–836.
  • [38] BEVAN T., CARRIVEAU R., GONEAU L., CADIEUX P., RAZVI H., Numerical simulation of peristaltic urine flow in a stented ureter, Am. J. Biomed. Sci., 2012, Vol. 4(3), 233–248.
  • [39] VAHIDI B., FATOURAEE N., A biomechanical simulation of ureteral flow during peristalsis using intraluminal morphometric data, J. of Theor. Biol., 2012, Vol 298, 42–50.
  • [40] SRIVASTAVA L.M., SRIVASTAVA V.P., Peristaltic transport of a non-Newtonian fluid (Application to the vas deferens at small intestine), Ann. BioMedical Eng., 1985, Vol. 13, 137–153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-989fad82-61be-413f-83af-fb819d377b3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.