PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical models represent a powerful tool for investigating the biomechanical behavior of articular cartilages, in particular in the case of complex conformation of anatomical site. In the literature, there are complex non-linear-multiphase models for investigating the mechanical response of articular cartilages, but seldom implemented for the analysis of high organized structure such as the foot. In the present work, the biomechanical behavior of foot cartilage is investigated by means of a fiber-reinforced hyperelastic constitutive model. The constitutive parameters are obtained through the comparison between in vitro experimental indentation tests on cartilage and numerical analysis data interpreting the specific experimental conditions. A finite element model of the hindfoot region is developed. Particular attention is paid to model cartilage in order to respect its morphometric configuration, including also the synovial capsule. The reliability of the procedure adopted is evaluated by comparing the numerical response of tibio-talar joint model with in vivo experimental tests mimicking the foot response in stance configuration.
Rocznik
Strony
57--65
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
  • University of Padova, Centre of Mechanics of Biological Materials, Padova, Italy
autor
  • University of Padova, Centre of Mechanics of Biological Materials, Padova, Italy
  • University of Padova, Centre of Mechanics of Biological Materials, Padova, Italy
  • University of Padova, Centre of Mechanics of Biological Materials, Padova, Italy
autor
  • University of Padova, Centre of Mechanics of Biological Materials, Padova, Italy
Bibliografia
  • [1] WIERZCHOLSKI K., Friction force and pressure calculations for time-dependent impulsive intelligent lubrication of human hip joint, Acta Bioeng. Biomech., 2010, 12(3), 95–101.
  • [2] HENDREN L., BEESON P., A review of the differences between normal and osteoarthritis articular cartilage in human knee and ankle joint. The Foot, 2010, 19(3), 171–176.
  • [3] AL-ALI D., GRAICHEN H., FABER S., ENGLMEIER K.H., REISER M., ECKSTEIN F., Quantitative cartilage imaging of the human hind foot: precision and inter-subject variability, J. Orthop. Res., 2002, 20(2), 249–56.
  • [4] ATHANASIOU K.A., LIU G.T., LAVERY L.A., LANCTOT D.R., SCHENCK R.C., Biomechanical topography of human articular cartilage in the first metatarso-phalangeal joint, Clin. Orthop. Relat. Res., 1998, 348, 269–281.
  • [5] LI G., WAN L., KOZANEK M. Determination of real-time in-vivo cartilage contact deformation in the ankle joint, J. Biomech., 2008, 41(1), 128–136.
  • [6] WIERZCHOLSKI K., Stochastic impulsive pressure calculations for time dependent human hip joint lubrication, Acta Bioeng. Biomech., 2012, 14(4), 81–100.
  • [7] CHIZHIK S.A., WIERZCHOLSKI K., TRUSHKO A.V., ZHYTKOVA M.A., MISZCZAK A., Properties of Cartilage on Micro- and Nanolevel, Adv. in Trib., 2010, ID 243150, 8 pp.
  • [8] SCHURZ J., RIBITSCH V., Rheology of synovial fluid, Biorheol., 1987, 24, 385–399.
  • [9] BURSAC P.M., OBITZ T.W., EISENBERG S.R., STAMENOVIC D., Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis, J. Biomech., 1999, 32, 1125–1130.
  • [10] PRENDERGAST P.J., VAN DRIEL W.D., KUIPER J.H., A comparison of finite element codes for the solution of biphasic poroelastic problems, Proc. Inst. Mech. Eng., 1996, 210(2), 131–136.
  • [11] STUEBNER M., HAIDER M.A., A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage, J. Biomech., 2010, 43, 1835–1839.
  • [12] HAIDER M.A., SCHUGART R.C., A numerical method for the continuous spectrum biphasic poro-visco-elastic model of articular cartilage, J. Biomech., 2006, 39, 77–183.
  • [13] DISILVESTRO M.R., JUN-KYO F.S., A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression, J. Biomech., 2001a, 34, 519–525.
  • [14] LI L.P. , M.D. BUSCHMANN, A. SHIRAZI-ADL, A fibril reinforced non homogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression, J. Biomech., 2000, 33, 1533–1541.
  • [15] GUPTAA S., LINB J., ASHBYC P., PRUITT L., A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach, J. Mech. Behav. Biomed. Mater., 2009, 2(4), 326–37.
  • [16] LI L.P., SHIRAZI-ADL A., BUSCHMANN M.D., Investigation of mechanical behaviour of articular cartilage by fibril reinforced poroelastic models, Biorheology, 2003, 40, 227–233.
  • [17] SEIFZADEH A., OGUAMANAM D.C.D., TRUTIAK N., HURTIG M., PAPINI M., Determination of nonlinear fiber-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis, Comput. Methods Programs Biomed., 2012, 107(2), 315–326.
  • [18] GARCÍA J.J., CORTÉS D.H., A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: Formulation and comparison with experimental data, J. Biomech., 2007, 40(8), 1737–1744.
  • [19] WILSON W., VAN DONKELAAR C.C., VAN RIETBERGEN B., HUISKES R., A fibril-reinforced poro-viscoelastic swelling model for articular cartilage, J. Biomech., 2005, 38(6), 1195–1204.
  • [20] JULKUNEN P., WILSON W., JURVELIN J.S., RIEPPO J., QU C.-J, LAMMI M.J., KORHONEN R.K., Stress–relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure, J. Biomech., 2008, 41, 1978–1986.
  • [21] GARCÍA J.J., CORTÉS D.H., A biphasic visco-hyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data, J Biomech., 2007, 40(8), 1737–1744.
  • [22] DISILVESTRO M.R., SUH J-K F., A cross-validation of the biphasic poro-viscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression, J. Biomech., 2001, 34, 519–525.
  • [23] GEFEN A., Stress analysis of the standing foot following surgical plantar fascia release, J. Biomech., 2002, 35(5), 629–637.
  • [24] CHEUNG J.T.M., ZHANG M., LEUNGA A.K.L., FAN J.B., Three-dimensional finite element analysis of the foot during standing - a material sensitivity study, J. Biomech., 2005, 38, 1045–1054.
  • [25] CHEN W.P., JU C.W., TANG F.T., Effects of total contact insoles on the plantar stress redistribution: a finite element analysis, Clin. Biomech., 2003, 18, S17–S24.
  • [26] ANTUNES P.J., DIAS G.R., COELHO A.T., REBELO F., PEREIRA T., Non-linear finite element modelling of anatomically detailed 3D foot model, http://www.materialise.com. 2010.
  • [27] ANDERSON D.D., GOLDSWORTHY J.K., LI W., JAMES RUDERT M., TOCHIGI Y., BROWN T., Physical Validation of a Patient-Specific Contact Finite Element Model of the Ankle, J. Biomech., 2007, 40(8), 1662–1669.
  • [28] LI L.P., BUSCHMANN M.D., SHIRAZI-ADL A., Strain-rate dependent stiffness of articular cartilage in unconfined compression, J. Biomech. Eng., 2003, 125(2), 161–168.
  • [29] WEISS J.A., MAKER B.N., GOVINDJE S., Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. Meth. Appl. Mech. Eng., 1996, 135(1–2), 107–128.
  • [30] MARSDEN J.E., HUGHES T.J.R., Mathematical Foundations of Elasticity, Dover Publications, New York, 1994.
  • [31] BROWN C.P., CRAWFORD R.W., OLOYEDE A., Indentation stiffness does not discriminate between normal and degraded articular cartilage, Clin. Biomech., 2007, 22(7), 843–848.
  • [32] ATHANASIOU K.A., ROSENWASSER M.P., BUCKWALTER J.A., MALININ T.I., MOW V.C., Interspecies comparison of in situ intrinsic mechanical properties of distal femoral cartilage, J. Orthop. Res., 1991, 9, 330–340.
  • [33] FORESTIERO A., CARNIEL E.L., NATALI A.N., Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling, Comp. Meth. Biomech. Biomed. Eng., in press; DOI: 10.1080/10255842.2012.688105.
  • [34] NATALI A.N., FONTANELLA C.G., CARNIEL E.L., YOUNG J.M., Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling, P. I. Mech. Eng. H, 2011, 225, 449–459.
  • [35] NATALI A.N., FORESTIERO A., CARNIEL E.L., Parameters identification in constitutive models for soft tissues mechanics, Russ. J. Biomech., 2009, 4(46), 29–39.
  • [36] WAN L., DE ASLA R.J., RUBASH H.E., LI G., Determination of in-vivo articular cartilage contact areas of human talocrural Cartilage, 2006, 14(12), 1294–1301.
  • [37] WELSCH G.H., MAMISCH T.C., HUGHES T., ZILKENS C., QUIRBACH S., SCHEFFLER K., KRAFF O., SCHWEITZER M.E., SZOMOLANYI P., TRATTNIG S., In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of d-GEMRIC, zonal T2, and T2 mapping of articular cartilage, Invest. Radiol., 2008, 43(9), 619–626.
  • [38] MILLINGTON S.A., GRABNER M., WOZELKA R., ANDERSON D.D., HURWITZ S.R., CRANDALL J.R., Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system, Osteoarthritis Cartilage, 2007, 15, 205–211.
  • [39] SUGIMOTO K., TAKAKURA Y., TOHNO Y., KUMAI T., KAWATE K., KADONO K., Cartilage thickness of the talar dome, Arthroscopy, 2005, 21(4), 401–404.
  • [40] ADAM C., ECKSTEIN F., MILZ S., PUTZ R., The distribution of cartilage thickness within the joints of the lower limb of elderly individuals, J. Anat., 1998, 193, 203–214.
  • [41] SAFARI M., BJELLE A., GUDMUNDSSON M., HÖGFORS C., GRANHED H., Clinical assessment of rheumatic diseases using viscoelastic parameters for synovial fluid, Biorheol., 1990, 27(5), 659–74.
  • [42] QUYNHHOA T.N., WONGA B.L., CHUN J., YOON Y.C., TALKE F.E., SAH RL., Macroscopic assessment of cartilage shear: Effects of counter-surface roughness, synovial fluid lubricant, and compression offset, J Biomech., 2010, 43, 1787–1793.
  • [43] FAM H., BRYANT J.T., KONTOPOULOU M., Rheological properties of synovial fluids, Biorheol., 2007, 44(2), 59–74.
  • [44] NATALI A.N., FORESTIERO A., CARNIEL E.L., PAVAN P.G., DAL ZOVO C., Investigation of foot plantar pressure: experimental and numerical analysis, Med. Biol. Eng. Comput., 2010, 48, 1167–1174.
  • [45] MÜLLER-GERBL M., PUTZ R., Demonstration of subchondral bone density patterns by three-dimensional CT osteo absorptiometry as a non-invasive method for in vivo assessment of individual long-term stresses in joints, J. Bone and Mineral Res., 1992. S411–S418.
  • [46] PARK S., NICOLL S.B., MAUCK R.L., ATESHIAN G.A., Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion, Ann. Biomed. Eng., 2008, 36(3), 425–434.
  • [47] REPO R.U., FINLAY J.B., Survival of articular cartilage after controlled impact, Journal of Bone and Joint Surgery [Am], 1977, 59-A, 1068–1076.
  • [48] ZIMMERMAN N.B., SMITH D.G., POTTENGER L.A., COOPERMAN D.R., Mechanical disruption of human patellar cartilage by repetitive loading in vitro, Clin. Orthop. Relat. Res., 1988, (229), 302–307.
  • [49] CHEN W.M., LEE T., LEE P.V.S., LEE J.W., LEE S.J., Effects of internal stress concentrations in plantar soft-tissue A preliminary three-dimensional finite element analysis, Med. Eng. Phys., 2010, 32(4), 324–331.
  • [50] BROWN C.P., NGUYEN T.C., MOODY H.R., CRAWFORD R.W., OLOYEDE A., Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage, Proc. Inst. Mech. Eng. H., 2009, 223(6), 643–652.
  • [51] ANDERSON D.D., GOLDSWORTHY J.K., SHIVANNA K., GROSLAND N.M., PEDERSEN D.R., THOMAS T.P., TOCHIGI Y., MARSH J.L., RUDERT M.J., BROWN T.D., Intra-articular Contact Stress Distributions at the Ankle throughout Stance Phase – Patient-Specific Finite Element Analysis as a Metric of Degeneration Propensity, J. Biomech., 2007, 40(8), 1662–1669.
  • [52] WIEWIORSKI M., HOECHEL S., WISHART K., LEUMANN A., MÜLLER-GERBL M., VALDERRABANO V., NOWAKOWSKI A.M., Computer Tomographic Evaluation of Talar Edge Configuration for Osteochondral Graft Transplantation, Clin. Anat., 2012, 25(6), 773–780.
  • [53] EL-KHOURY G.Y., ALLIMAN K.J., LUNDBERG H.J., RUDERT M.J., BROWN T.D., SALTZMAN C.L., Cartilage Thickness in Cadaveric Ankles: Measurement with Double-Contrast Multi–Detector Row CT Arthrography versus MR Imaging, Radiol., 2004, 233, 768–773.
  • [54] KUETTNER K.E., COLE A.A., Cartilage degeneration in different human joints, Osteoarth. Cart., 2005, 13(2), 93–103.
  • [55] SHEPHERD D.E.T., SEEDHOM B.B., Thickness of human articular cartilage in joints of the lower limb, Ann. Rheum. Dis., 1999, 58, 27–34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9898d235-bc10-47cd-b8b9-362163dca1f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.