Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Design closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region gradient search algorithm is proposed for accelerated optimization of antenna structures. The algorithm is based on sparse updates of antenna sensitivities involving various methods that include the Broyden formula used for selected parameters, as well as dimensionality- and convergence-dependent acceptance thresholds which enable additional speedup, and make the procedure easy to tune for various numbers of antenna parameters. Comprehensive verification executed for a set of benchmark antennas delivers consistent results and considerable cost reduction of up to 60 percent with respect to the reference algorithm. Experimental validation is also provided.
Czasopismo
Rocznik
Tom
Strony
595--605
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wzory
Twórcy
autor
- Reykjavik University, Engineering Optimization and Modeling Center, Menntavegur 1, 101 Reykjavik, Iceland
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Saini, R. K., Dwari S. (2016). A broadband dual circularly polarized square slot antenna. IEEE Trans. Ant. Prop., 64 (1), 290-294.
- [2] Liao, W. J., Hsieh, C. Y., Dai, B. Y., Hsiao, B. R. (2015). Inverted-F/slot integrated dual-band four-antenna system for WLAN access point. IEEE Ant. Wireless Prop. Lett., 14, 847-850.
- [3] Zhang, L., Gao, S., Luo, Q., Young, P. R., Li, Q. (2017). Wideband loop antenna with electronically switchable circular polarization. IEEE Ant. Wireless Prop. Lett., 16, 242-245.
- [4] Vendik, I. B., Rusakov, A., Kanjanasit, K., Hong, J., Filonov, D. (2017). Ultrawideband (UWB) planar antenna with single-, dual- and triple-band notched characteristic based on electric ring resonator. IEEE Ant. Wireless Prop. Lett., 16, 1597-1600.
- [5] Narbudowicz A., Amman, M. J. (2018). Low-cost multimode patch antenna for dual MIMO and enhanced localization use. IEEE Trans. Ant. Prop., 66 (1), 405-408.
- [6] Wu, J., Sarabandi, K. (2017). Compact omnidirectional circularly polarized antenna. IEEE Trans. Ant. Prop., 65 (4), 1550-1557.
- [7] Balanis, C. A., (Editor), (2008). Modern Antenna Handbook. Wiley.
- [8] Wei, D. J., Li, J., Yang, G., Liu, J., Yang, J. J. (2018). Design of compact dual-band SIW slotted array antenna. IEEE Ant. Wireless Prop. Lett., 17 (6), 1085-1089.
- [9] Zhu, S., Liu, H., Chen, Z., Wen, P. (2018). A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmwave application. IEEE Ant. Wireless Prop. Lett., 17 (5), 776-779.
- [10] Koziel, S., Bekasiewicz, A. (2016). Multi-objective design of antennas using surrogate models. World Scientific.
- [11] Wang, J., Yang, X. S., Ding, X., Wang, B. Z. (2017). Antenna radiation characteristics optimization by a hybrid topological method. IEEE Trans. Ant. Prop., 65 (6), 2843-2854.
- [12] Kouassi, A., Nguyen-Trong, N., Kaufmann, T., Lallechere, S., Bonnet, P., Fumeaux, C. (2016). Reliability-aware optimization of a wideband antenna. IEEE Trans. Ant. Prop., 64 (2), 450-460.
- [13] Choi, K., Jang, D. H., Kang, S. I., Lee, J. H., Chung, T. K., Kim, H. S. (2016). Hybrid algorithm combining genetic algorithm with evolution strategy for antenna design. IEEE Trans. Magn., 52 (3), 1-4.
- [14] Zaharis, Z. D., Gravas, I. P., Yioultsis, T. V., Lazaridis, P. I., Glover, I. A., Skeberis, C., Xenos, T. D. (2017). Exponential log-periodic antenna design using improved particle swarm optimization with velocity mutation. IEEE Trans. Magn., 53 (6), 1-4.
- [15] Ghassemi, M., Bakr, M., Sangary, N. (2013). Antenna design exploiting adjoint sensitivity-based geometry evolution. IET Microwaves Ant. Prop., 7 (4), 268-276.
- [16] Xiao, L. Y., Shao, W., Ding, X., Wang, B. Z. (2018). Dynamic adjustment kernel extreme learning machine for microwave component design. IEEE Trans. Microwave Theory Techn., 66 (10), 4452-4461.
- [17] Koziel, S. Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Surrogate-based approach. Springer.
- [18] de Villiers, D.I.L., Couckuyt, I., Dhaene, T. (2017). Multi-objective optimization of reflector antennas using kriging and probability of improvement. Int. Symp. Ant. Prop., San Diego, USA, 985-986.
- [19] Jacobs, J. P. (2016). Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas. IET Microwaves Ant. Prop., 10 (11), 1189-1195.
- [20] Zhu, J., Bandler, J. W., Nikolova, N. K., Koziel, S. (2007). Antenna optimization through space mapping. IEEE Trans. Ant. Prop., 55 (3), 651-658.
- [21] Koziel, S., Unnsteinsson, S. D. (2018). Expedited design closure of antennas by means of trust-region-based adaptive response scaling. IEEE Ant. Wireless Prop. Lett., 17 (6), 1099-1103.
- [22] Su, Y., Lin, J., Fan, Z., Chen, R. (2017). Shaping optimization of double reflector antenna based on manifold mapping. Int. Applied Computational Electromagnetic Society Symp. (ACES), Suzhou, China, 1-2.
- [23] Koziel, S. (2015). Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF & Micr. CAE, 25 (5), 394-402.
- [24] Bekasiewicz, A., Koziel, S., Cheng, Q. S. (2018). Reduced-cost constrained miniaturization of wide-band antennas using improved trust-region gradient search with repair step. IEEE Antennas Wireless Prop. Lett., 17 (4), 559-562.
- [25] Chen, Y.-C., Chen, S.-Y., Hsu, P. (2006). Dual-band slot dipole antenna fed by a coplanar waveguide. IEEE Int. Symp. Ant. Prop., Albuquerque, USA, 3589-3592.
- [26] Alsath, M.G.N., Kanagasabai, M. (2015). Compact UWB monopole antenna for automotive communications. IEEE Trans. Ant. Prop., 6 (9), 4204-4208.
- [27] Suryawanshi, D. R., Singh, B. A. (2014). A compact UWB rectangular slotted monopole antenna. IEEE Int. Conf. Control, (ICCICCT), Kanyakumari, India, 1130-1136.
- [28] Conn, A., Scheinberg, K., Vincente, L. N. (2009). Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization.
- [29] Nocedal, J., Wright, S. (2006). Numerical Optimization. 2nd ed., Springer.
Uwagi
EN
This work was supported in part by the Icelandic Centre for Research (RANNIS) Grant 174114051 and 174573052, and by the National Science Centre of Poland Grant 2015/17/B/ST6/01857. The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9892cc65-4b72-4271-87c7-b051f480b9ce