Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to a specific optimization problem associated with the hedging of contingent claims in continuous-time incomplete models of financial markets. Generally speaking, we place ourselves within the standard framework of the theory of continuous trading, as exposed in Harrison and Pliska [13]. Our aim is twofold. Firstly, we present a relatively concise exposition of the risk-minimizing methodology (due essentially to Follmer and Sondermann [12], Follmer and Schweizer [11] and Schweizer [33]) in a multi-dimensional continuous-time framework. Let us mention here that this approach is based on the specific kind of minimization of the additional cost associated with a hedging strategy at all times before the terminal date T. Secondly, we provide some new results which formalize some concepts introduced in Hofman et a/.[l5], in particular, the general results of the first, part are specialized to the case of multi-dimensional Ito processes. Finally, in Section 6 the general theory is illustrated by means of an example dealing with the risk-minimizing hedging of a stock index option in an incomplete framework. This example is motivated bv the work of Lamberton and Lapeyre [22] who have! solved a related, but simpler, problem of a risk-minimizing hedging under the martingale measure.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
41--73
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Institute of Mathematics, Politechnika Warszawska 00-661 Warszawa, Poland
Bibliografia
- [1] J.-P. Ansel and C. Stricker, Lois de martingale, densités et décomposition de Föllmer Schweizer. Ann. Inst. H. Poincare Probab. Statist. 28 (1992) 375-392.
- [2] F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659.
- [3] E. M. Barron and R. Jensen, A stochastic control approach to the pricing of options. Math. Oper. Res. 15 (1990), 49-79.
- [4] N. Christopeit and M. Musiela, On the existence and characterization of arbitrage-free measures in contingent claim valuation. Stochastic Anal. Appl. 12 (1994), 41-63.
- [5] D. Duffie and H. R. Richardson, Mean-variance hedging in continuous time. Ann. Appl. Probab. 1 (1991) 1-15.
- [6] E. Eberlein, On modeling questions in security valuation. Math. Finance 2 (1992), 17-32.
- [7] N. ElKaroui and M. C. Quenez, Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optimiz. 33 (1995), 29-66.
- [8] E. F. Fama, The behaviour of stock market prices. J. Business 38 (1965), 34-105.
- [9] E. F. Fama and J. Macbeth, Risk, return and equilibrium: Empirical tests. Polit. Econ. 81 (1973), 607-636.
- [10] H. Follmer and M. Schweizer, Hedging by sequential regression: An introduction to the mathematics of option trading. The ASTIN Bulletin 18 (1989) 147-160.
- [11] H. Follmer and M. Schweizer, Hedging of contingent claims under incomplete information. In: Applied Stochastic Analysis 5, M. H. A. Davis and R. J. Elliott, eds., Gordon and Breach, New York, 1991.
- [12] H. Follmer and D. Sondermann, Hedging of non-redundant contingent claims. In: Contributions to Mathematical Economics, W. Hildebrandt and A. Mas-Colell, eds., 1986.
- [13] J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading. Stochastic Process. Appl. 11 (1981) 215-260.
- [14] J. M. Harrison and S. R. Pliska, A stochastic calculus model of continuous trading: complete markets. Stochastic Process. Appl. 15 (1983) 313-316.
- [15] N. Hofmann, E. Platen and M. Schweizer, Option pricing under incompleteness and stochastic volatility. Math. Finance 2 (1992) 153-187.
- [16] S. D. Jacka, A martingale representation result and an application to incomplete financial markets. Math. Finance 2 (1992) 239-250.
- [17] R. A. Jarrow and D. B. Madan, A characterization of complete markets on a Brownian filtration. Math. Finance 1 (1991) 31-43.
- [18] I. Karatzas, Optimization problems in the theory of continuous trading. SIAM J. Control Optim. 27 (1989), 1221-1259.
- [19] I. Karatzas, J. P. Lehoczky, S. P. Sethi, and S. E. Shreve, Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11 (1986), 261-294.
- [20] I. Karatzas, J. P. Lehoczky, S. E. Shreve and G.-L. Xu, Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29 (1991) 702-730.
- [21] S. J. Kon, Models of stock returns - a comparison. J. Finance 39 (1984), 147-165.
- [22] D. Lamberton and B. Lapeyre, Hedging index options with few assets. Math. Finance 3 (1993) 25-42.
- [23] F. Mercurio, Option pricing with hedging at fixed trading dates. Preprint, 1994.
- [24] R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model. Rev. Econ. Statist. 51 (1969), 247-257.
- [25] R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3 (1971), 373-413.
- [26] R. C. Merton, Theory of rational option pricing. Bell J. Econ. Management Sci. 4 (1973) 141-183.
- [27] S. R. Pliska, A stochastic calculus model of continuous trading: Optimal portfolios. Math. Oper. Res. 11 (1986), 371-382.
- [28] P. Protter, Stochastic Integration and Differential Equations. Springer, Berlin, 1990.
- [29] W. Runggaldier and M. Schweizer, Convergence of option values under incom pleteness. In: Progress in Probability, Vol. 36, Seminar on Stochastic Analysis, Random Fields and Applications, E. Bolthausen et al., eds., Birkhäuser, 1995, pp. 365- 384.
- [30] P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Statist. 51 (1969), 239-246.
- [31] W. Schachermayer, A counterexample to several problems in the theory of asset pricing. Math. Finance 3 (1993), 217-230.
- [32] M. Schweizer, Risk-minimality and orthogonality of martingales. Stochastics Rep. 30 (1990) 123-131.
- [33] M. Schweizer, Option hedging for semimartingales. Stochastic Process. Appl. 37 (1991) 339-363.
- [34] M. Schweizer, Mean-variance hedging for general claims. Ann. Appl. Probab. 2 (1992) 171-179.
- [35] M. Schweizer, Martingale densities for general asset prices. J. Math. Econ. 21 (1992), 363-378.
- [36] M. Schweizer, Variance-optimal hedging in discrete-time. Math. Oper. Res. 20 (1995) 1-32.
- [37] M. Schweizer, Approximation pricing and the variance-optimal martingale measure. Preprint, University of Göttingen, 1993.
- [38] G. W. Schwert and P. J. Seguin, Heteroskedasticity in stock returns. J. Finance 45 (1990), 1129-1155.
- [39] S. E. Shreve, A control theorist’s view of asset pricing. In: Applied Stochastic Analysis 5, M. H. A. Davis and R. J. Elliott, eds., Gordon and Breach, New York, 1991.
- [40] C. Stricker, Arbitrage et lois de martingale. Ann. Inst. H. Poincare Probab. Statist. 26 (1990) 451-460.
- [41] M. S. Taqqu and W. Willinger, The analysis of finite security markets using martingales. Adv. Appl. Probab. 19 (1987) 1-25.
- [42] S. J. Taylor, Modeling stochastic volatility: A review and comparative study. Math. Finance 1 (1994), 183-204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-988fc9b4-8750-43ed-9a62-8fe3fbcc1441