PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiscale assessment of additively manufactured free-form surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article reviews the results of experimental tests assessing the impact of process parameters of additive manufacturing technologies on the geometric structure of free-form surfaces. The tests covered surfaces manufactured with the Selective Laser Melting additive technology, using titanium-powder-based material (Ti6Al4V) and Selective Laser Sintering from polyamide PA2200. The evaluation of the resulting surfaces was conducted employing modern multiscale analysis, i.e., wavelet transformation. Comparative studies using selected forms of the mother wavelet enabled determining the character of irregularities, size of morphological features and the indications of manufacturing process errors. The tests provide guidelines and allow to better understand the potential in manufacturing elements with complex, irregular shapes.
Rocznik
Strony
157--168
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
  • Kielce University of Technology, Department of Mechanical Engineering and Metrology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] Everts, M., Robbertse, P., & Spitholt, B. (2022). The effects of surface roughness on fully developed laminar and transitional flow friction factors and heat transfer coefficients in horizontal circular tubes. International Journal of Heat and Mass Transfer, 189, 122724. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122724
  • [2] Chen, H., Xu, C., Xiao, G., Yi, M., Chen, Z., & Zhang, J. (2022). Analysis of the relationship between roughness parameters of wear surface and tribology performance of 5CB liquid crystal. Journal of Molecular Liquids, 352, 118711. https://doi.org/10.1016/j.molliq.2022.118711
  • [3] Niemczewska-Wójcik, M. (2017). Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests. Measurement: Journal of the International Measurement Confederation, 107, 89-98. https://doi.org/10.1016/j.measurement.2017.04.045
  • [4] Plawsky, J. L., Ojha, M., Chatterjee, A., & Wayner, P. C. (2009). Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chemical Engineering Communications, 196(5), 658-696. https://doi.org/10.1080/00986440802569679
  • [5] Choudhury, M. D., Das, S., Banpurkar, A. G., & Kulkarni, A. (2022). Regression analysis of wetting characteristics for different random surface roughness of polydimethylsiloxane using sandpapers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647(April), 129038. https://doi.org/10.1016/j.colsurfa.2022.129038
  • [6] Kozior, T., Mamun, A., Trabelsi, M., & Sabantina, L. (2022). Comparative Analysis of Polymer Composites Produced by FFF and PJM 3D Printing and Electrospinning Technologies for Possible Filter Applications. Coatings, 12(1), 48. https://doi.org/10.3390/coatings12010048
  • [7] Peta, K., Bartkowiak, T., Galek, P., & Mendak, M. (2021). Contact angle analysis of surface topographies created by electric discharge machining. Tribology International, 163(June), 107139. https://doi.org/10.1016/j.triboint.2021.107139
  • [8] Liu, S., Jin, S., Zhang, X., Chen, K., Wang, L., & Zhao, H. (2018). Optimization of 3D surface roughness induced by milling operation for adhesive-sealing. Procedia CIRP, 71, 279-284. https://doi.org/10.1016/j.procir.2018.05.011
  • [9] Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. https://doi.org/10.1016/j.biomaterials.2016.01.012
  • [10] Pawlus, P., Reizer, R., & Wieczorowski, M. (2021). Analysis of surface texture of plateau-honed cylinder liner - A review. Precision Engineering, 72(June), 807-822. https://doi.org/10.1016/j.precisioneng.2021.08.001
  • [11] Pranav, C., Do, M. T., & Tsai, Y. C. (2021). Analysis of high-friction surface texture with respect to friction and wear. Coatings, 11(7), 1-23. https://doi.org/10.3390/coatings11070758
  • [12] International Organization for Standardization (2011). Geometrical product specifications (GPS) - general concepts - part 1: model for geometrical specification and verification (ISO Standard No. 17450-1:2011). https://www.iso.org/standard/63787.html
  • [13] Poniatowska, M. (2012). Deviation model based method of planning accuracy inspection of free-form surfaces using CMMs. Measurement: Journal of the International Measurement Confederation, 45(5), 927-937. https://doi.org/10.1016/j.measurement.2012.01.051
  • [14] Rajain, K., Sliusarenko, O., Bizzarri, M., & Barton, M. (2022). Curve-guided 5-axis CNC flank milling of free-form surfaces using custom-shaped tools. Computer Aided Geometric Design. https://doi.org/10.1016/j.cagd.2022.102082
  • [15] Catalucci, S., Senin, N., Sims-Waterhouse, D., Ziegelmeier, S., Piano, S., & Leach, R. (2020). Measurement of complex freeform additively manufactured parts by structured light and photogrammetry. Measurement: Journal of the International Measurement Confederation, 164, 108081. https://doi.org/10.1016/j.measurement.2020.108081
  • [16] Lou, S., Pagani, L., Zeng, W., Jiang, X., & Scott, P. J. (2020). Watershed segmentation of topographical features on freeform surfaces and its application to additively manufactured surfaces. Precision Engineering, 63(August 2019), 177-186. https://doi.org/10.1016/j.precisioneng.2020.02.005
  • [17] Hilerio, I., Mathia, T., & Alepee, C. (2004). 3D measurements of the knee prosthesis surfaces applied in optimizing of manufacturing process. Wear, 257(12 SPEC.ISS.), 1230-1234. https://doi.org/10.1016/j.wear.2004.05.027
  • [18] Gogolewski, D., Kozior, T., Zmarzły, P., & Mathia, T. G. (2021). Morphology of Models Manufactured by SLM Technology and the Ti6Al4V Titanium Alloy Designed for Medical Applications. Materials, 14(21), 6249. https://doi.org/10.3390/ma14216249
  • [19] Jiang, X. J., & Scott, P. (2020). Advanced Metrology: Freeform Surfaces.
  • [20] Wang, J., Zou, R., Colosimo, B. M., Lu, W., Xu, L., & Jiang, X. J. (2021). Characterisation of freeform, structured surfaces in T-spline spaces and its applications. Surface Topography: Metrology and Properties, 9(2), 025003. https://doi.org/10.1088/2051-672X/abf408
  • [21] Wójcik, A., Niemczewska-Wójcik, M., & Sładek, J. (2017). Assessment of free-form surfaces’ reconstruction accuracy. Metrology and Measurement Systems, 24(2), 303-312. https://doi.org/10.1515/mms-2017-0035
  • [22] Zahmati, J., Amirabadi, H., & Mehrad, V. (2018). A hybrid measurement sampling method for accurate inspection of geometric errors on freeform surfaces. Measurement: Journal of the International Measurement Confederation, 122(November 2017), 155-167. https://doi.org/10.1016/j.measurement.2018.03.013
  • [23] Xu, P., Cheung, C. F., Wang, C., & Zhao, C. (2020). Novel hybrid robot and its processes for precision polishing of freeform surfaces. Precision Engineering, 64, 53-62. https://doi.org/10.1016/j.precisioneng.2020.03.013
  • [24] Liu, X., & Li, Y. (2019). Feature-based adaptive machining for complex freeform surfaces under cloud environment. Robotics and Computer-Integrated Manufacturing, 56(October 2018), 254-263. https://doi.org/10.1016/j.rcim.2018.10.008
  • [25] Tan, N. Y. J., Zhou, G., Liu, K., & Kumar, A. S. (2021). Diamond shaping of blazed gratings on freeform surfaces. Precision Engineering, 72(May), 899-911. https://doi.org/10.1016/j.precisioneng.2021.08.019
  • [26] Gogolewski, D. (2021). Fractional spline wavelets within the surface texture analysis. Measurement: Journal of the International Measurement Confederation, 179(April), 109435. https://doi.org/10.1016/j.measurement.2021.109435
  • [27] Brown, C. A., Hansen, H. N., Jiang, X. J., Blateyron, F., Berglund, J., Senin, N., Bartkowiak, T., Dixon, B., Le Goïc, G., Quinsat, Y., Stemp, W. J., Thompson, M. K., Ungar, P. S., & Zahouani, E. H. (2018). Multiscale analyses and characterizations of surface topographies. CIRP Annals, 67(2), 839-862. https://doi.org/10.1016/j.cirp.2018.06.001
  • [28] Pagani, L., Qi, Q., Jiang, X., & Scott, P. J. (2017). Towards a new definition of areal surface texture parameters on freeform surface. Measurement: Journal of the International Measurement Confederation, 109, 281-291. https://doi.org/10.1016/j.measurement.2017.05.028
  • [29] Pagani, L., Townsend, A., Zeng, W., Lou, S., Blunt, L., Jiang, X. Q., & Scott, P. J. (2019). Towards a new definition of areal surface texture parameters on freeform surface: Re-entrant features and functional parameters. Measurement: Journal of the International Measurement Confederation, 141, 442-459. https://doi.org/10.1016/j.measurement.2019.04.027
  • [30] Gogolewski, D. (2020). Influence of the edge effect on the wavelet analysis process. Measurement, 152, 107314. https://doi.org/10.1016/j.measurement.2019.107314
  • [31] Herrmann, F. J. (1997). A scaling medium representation a discussion on well-logs, fractals and waves. Beeld en Grafisch Centrum, Technische Universiteit Delft.
  • [32] Karolczak, P., Kowalski, M., & Wiśniewska, M. (2020). Analysis of the possibility of using wavelet transform to assess the condition of the surface layer of elements with flat-top structures. Machines, 8(4), 1-21. https://doi.org/10.3390/machines8040065
  • [33] Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M., & MathWorks. (2015). Wavelet Toolbox User’s Guide. The MathWorks, Inc.
  • [34] Gogolewski, D., Bartkowiak, T., Kozior, T., & Zmarzły, P. (2021). Multiscale analysis of surface texture quality of models manufactured by laser powder-bed fusion technology and machining from 316l steel. Materials, 14(11), 2794. https://doi.org/10.3390/ma14112794
  • [35] Abdul-Rahman, H. S., Jiang, X. J., & Scott, P. J. (2013). Freeform surface filtering using the lifting wavelet transform. Precision Engineering, 37(1), 187-202. https://doi.org/10.1016/j.precisioneng.2012.08.002
  • [36] Sun, J., Song, Z., He, G., & Sang, Y. (2018). An improved signal determination method on machined surface topography. Precision Engineering, 51, 338-347. https://doi.org/10.1016/j.precisioneng.2017.09.004
  • [37] Dutta, S., Pal, S. K., & Sen, R. (2016). Progressive tool flank wear monitoring by applying discrete wavelet transform on turned surface images. Measurement: Journal of the International Measurement Confederation, 17, 388-401. https://doi.org/10.1016/j.measurement.2015.09.028
  • [38] Bruzzone, A. A. G., Montanaro, J. S., Ferrando, A., & Lonardo, P. M. (2004). Wavelet analysis for surface characterisation: An experimental assessment. CIRP Annals - Manufacturing Technology, 53(1), 479-482. https://doi.org/10.1016/S0007-8506(07)60744-6
  • [39] Gogolewski, D., Makieła, W., & Nowakowski, Ł. (2020). An assessment of applicability of the two-dimensional wavelet transform to assess the minimum chip thickness determination accuracy. Metrology and Measurement Systems, 27(4), 659-672. https://doi.org/10.24425/mms.2020.134845
  • [40] Edjeou, W., Cerezo, V., Zahouani, H., & Salvatore, F. (2020). Multiscale analyses of pavement texture during polishing. Surface Topography: Metrology and Properties, 8(2), 024008. https://doi.org/10.1088/2051-672x/ab8f1b
  • [41] Leach, R., Thompson, A., Senin, N., & Maskery, I. (2017, March). A metrology horror story: The additive surface. ASPEN/ASPE Spring Topical Meeting on Manufacture and Metrology of Structured and Freeform Surfaces for Functional Applications, Hong Kong, China.
  • [42] Senin, N., Thompson, A., & Leach, R. (2018). Feature-based characterisation of signature topography in laser powder bed fusion of metals. Measurement Science and Technology. https://doi.org/10.1088/1361-6501/aa9e19
  • [43] Quinsat, Y., Lartigue, C., Brown, C. A., & Hattali, L. (2017). Multi-scale surface characterization in additive manufacturing using CT. Advances on Mechanics, Design Engineering and Manufacturing, 271-280. https://doi.org/10.1007/978-3-319-45781-9_28
  • [44] Todhunter, L. D., Leach, R. K., Lawes, S. D. A., & Blateyron, F. (2017). Industrial survey of ISO surface texture parameters. CIRP Journal of Manufacturing Science and Technology. https://doi.org/10.1016/j.cirpj.2017.06.001
  • [45] Leach, R. K., Bourell, D., Carmignato, S., Donmez, A., Senin, N., & Dewulf, W. (2019). Geometrical metrology for metal additive manufacturing. CIRP Annals. https://doi.org/10.1016/j.cirp.2019.05.004
Uwagi
1. The research presented in this paper was supported by the National Science Centre of Poland under the scientific work No. 2020/04/X/ST2/00352 “Multiscale analysis of free-form and functional surfaces manufactured by additive technology”.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9881e61d-fafc-4c5b-bfa6-c3cba891df0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.