PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive, compensating control of wheel slip in railway vehicles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of slip stabilization and tracking in railway vehicle applications is considered. A nonlinear adaptive control compensating for unknown disturbance in motion dynamics such as: friction, contact force variations and air resistance is proposed. The control is based on approximate models with adaptive parameters. The stability of several control algorithms is proven and performance of the derived controllers is investigated. The proposed controllers are evaluated in numerical simulations and by DSP application to slip control in a friction gear driven by a permanent magnet synchronous motor.
Rocznik
Strony
955--963
Opis fizyczny
Bibliogr. 19 poz., rys., wykr., tab.
Twórcy
  • Institute of Automatic Control, Lodz University of Technology, 18/22 Stefanowskiego St., 90-924 Lodz, Poland
Bibliografia
  • [1] O. Polach, “Creep forces in simulations of traction vehicles running on adhesion limit”, Wear 258, 992-1000 (2005).
  • [2] S. Iwnicki, Handbook of Railway Vehicle Dynamics, CRC Press, London, 2006.
  • [3] D-Y. Park, M-S. Kim, D-H. Hwa Ng, Y-J. Kim, and J-H. Lee, “Hybrid re-adhesion control method for traction system of high-speed railway”, IEEE, Proc. Fifth Int. Conf. Electrical Machines and Systems 2, 739-742 (2001).
  • [4] M. Spyriagin, K.S. Lee, and H.H. Yoo, “Control system for maximum use of adhesive forces of a railway in a tractive mode”, Mechanical Systems and Signal Processing 22, 709-720 (2008).
  • [5] T. Watanabe and M. Yamashita, “Basic study of anti-slip control without speed sensor for multiple motor drive of electric railway vehicles”, IEEE Proc. Power Conversion Conf. 3, 1026-1032 (2002).
  • [6] S. Kadowaki, K. Ohishi, T. Hata, N. Iida, M. Takagi, T. Sano, and S. Yasukawa, “Antislip readhesion control based on speedsensorless vector control and disturbance observer for electric commuter train - series 205-5000 of the East Japan Railway Company”, IEEE Trans. Ind. Electronics 54, 2001-2007 (2007).
  • [7] K. Ohishi, Y. Ogawa, I. Miyashita, and S. Yasukawa, “Anti-slip re-adhesion control of electric motor coach based on force control using disturbance observer”, IEEE Industry Applications Conf. 2, 1001-1007 (2000).
  • [8] K. Ohishi, S. Kadowaki, Y. Smizu, T. Sano, S Yasukawa, and T. Koseki, “Anti-slip readhesion control of electric commuter train based on disturbance observer considering bogie dynamics”, IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conf. 1, 5270-5275 (2006).
  • [9] Rizzo and R.D. Iannuzzi, “Electrical drives for railway traction: observer for friction force estimation”, Power System Technology, Proc. PowerCon 2002, Int. Conf. 2, 723-726 (2002).
  • [10] Q. Song, Y.D. Song, and W. Cai, “Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces”, Vehicle System Dynamics 49, 1441-1454 (2011).
  • [11] Q. Song and Y.D. Song, “Neuroadaptive fault-tolerant control of high speed trains with input nonlinearities and actuator failures”, American Control Conf. 2011, 576-581 (2011).
  • [12] W. Cai, W. Liao, D. Li, and Y. Song, “Observer based traction/ braking control design for high speed trains considering adhesion nonlinearity”, Abstract and Applied Analysis ID 968017, 17-27 (2014), DOI:10.1155/2014/968017.
  • [13] J.S. Kim, S.H. Park, J.J. Choi, and H. Yamazaki, “Adaptive sliding mode control of adhesion force in railway rolling stocks”, Sliding Mode Control INTECH, CD-ROM (2011).
  • [14] D. Caporale, P. Colaneri, and A. Astolfi “Adaptive nonlinear control of braking in railway vehicles”, Proc. 52 IEEE Conf. Decision and Control 1, 6892-6897 (2013).
  • [15] J.J. Kalker, “The computation of three-dimensional rolling contact with dry friction”, Int. J. Numerical Methods in Engineering 14, 1293-1307 (1979).
  • [16] J. Kabzinski, “Fuzzy friction modeling for adaptive control of mechatronic systems”, in Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology vol. 381, pp. 185-195, Springer, Berlin, 2012.
  • [17] J.-S.R. Jang, “ANFIS: adaptive-network-based fuzzy inference system”, Systems, Man and Cybernetics, IEEE Trans. 23, 665-685 (1993).
  • [18] W. Dong, J.A. Farrell, M.M. Polycarpou, V. Djapic, and M. Sharma, “Command filtered adaptive backstepping”, Control Systems Technology, IEEE Trans. 20, 566-580 (2012).
  • [19] H. Khalil, Nonlinear Systems, Macmilan Publishing Co., New York, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-987f70f5-499e-484f-9c79-ae23242709de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.