PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Colloid Water Thickness on Microstructures and Mechanical Properties of Titanium/Steel Interfaces Prepared by Explosive Welding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using colloid water as a covering for explosives can improve the energy efficiency for explosive welding, while its effects on bonding properties remain unclear. Here, by employing titanium/steel as a model system, the effect of covering thickness on microstructures and mechanical properties of the bonding interface was systematically investigated. It was found that all the welds displayed wavy interfaces, and the wave size increased with increasing covering thickness. Vortices characterized by solidified melt zones surrounded by strongly deformed parent materials, were only formed for the welds performed with a covering. Moreover, with increasing covering thickness, both the tensile strength and the elongation of the titanium/steel plate decreased, and the failure mode changed from ductile to cleavage fracture, gradually. In the tensile-shear tests, all the fractures took place in titanium matrix without separation at interface, indicating that the titanium/steel interfaces had an excellent bonding strength. The micro-hardness decreased with increasing distance from the interface, and this trend was more remarkable for a thicker covering. The micro-hardness inside the solidified melt zones was far higher than that observed in strain-hardened layers of the parent metal, due to formation of hard intermetallic compounds.
Twórcy
autor
  • Anhui University of Science and Technology State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan, Anhui Province, China
autor
  • Nanjing University of Science and Technology, National Key Laboratory of Transient Physics, Nanjing, 210094, China
Bibliografia
  • [1] K. Ishida, Y. Gao, K. Nagatsuka, M. Takahashi, K. Nakata, J. Alloy. Compd. 630, 172-177 (2015).
  • [2] T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, W. Zhang, JOM-USL. 70, 504-509 (2017).
  • [3] D.H. Yang, Z.A. Luo, G.M. Xie, R.D.K. Misra, Mater. Sci. Techlond. 34, 1700-1709 (2018).
  • [4] J. Ning, L.J. Zhang, G.C. Jiang, M.X. Xie, X.Q. Yin, J.X. Zhang, J. Alloy. Compd. 701, 587-602 (2017).
  • [5] G. Pardal, S. Ganguly, S. Williams, J. Vaja, Int. J. Adv. Manuf. Tech. 86, 1139-1150 (2016).
  • [6] T.N. Prasanthi, C. Sudha, S. Saroja, N.N. Kumar, G.D. Janakiram, Mater. Des. 88, 58-68 (2015).
  • [7] Y. Gao, K. Nakata, K. Nagatsuka, F.C. Liu, J. Liao, Mater. Des. 65, 17-23 (2015).
  • [8] A.N. Cherepanov, V.I. Mali, I.N. Maliutina, Int. J. Adv. Manuf. Tech. 90, 3037-3043 (2017).
  • [9] Y. Zhang, D. Sun, X. Gu, H. Li, Mater. Lett. 185, 152-155 (2016).
  • [10] T. Pasang, S. Pramana, M. Kracum, W. Misiolek, M. Aziziderouei, M. Mizutani, O. Kamiya, Metals. 8, 863 (2018).
  • [11] Q. Chu, M. Zhang, J. Li, C. Yan, Z. Qin, J. Mater. Process. Tech. 240, 293-304 (2017).
  • [12] C. Yu, Z.C. Qi, H. Yu, C. Xu, H. Xiao, J. Mater. Eng. Perform. 27, 1664-1672 (2018).
  • [13] J. Song, A. Kostka, M. Veehmayer, D. Raabea. Mater. Sci. Eng. A. 528, 2641-2647 (2011).
  • [14] P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, R. Tomoshige, J. Mater. Process. Tech. 195, 232-240 (2008).
  • [15] M. Gloc, M. Wachowski, T. Plocinski, K. Kurzydlowski, J. Alloy. Compd. 671, 446-451 (2016).
  • [16] S.A.A.A. Mousavi, P.F. Sartangi, Mater. Sci. Eng. A. 494 329-336 (2008).
  • [17] M. Wachowski, M. Gloc, T. Ślęzak, T. Płociński, K.J. Kurzydłowski, j. Mater. Eng. Perform. 26, 945-954 (2017).
  • [18] T.N. Prasanthi, C. Sudha, S. Saroja, Mater. Des. 93, 180-193 (2016).
  • [19] S.A.A. Akbari Mousavi, P.F. Sartangi, Mater. Des. 30, 459-468 (2009).
  • [20] Q. Zhou, R. Liu, C. Ran, K. Fan, J. Xie, P. Chen. Mater Sci. Eng. A 830, 142260 (2022).
  • [21] Q. Chu, M. Zhang, J. Li, C. Yan. Mater Sci. Eng. A. 689, 323-331 (2017).
  • [22] J. Ning, L.J. Zhang, M.X. Xie, H.X. Yang, X.Q. Yin, J. Alloy. Compd. 698, 835-851 (2017).
  • [23] F. Fındık, Mater. Des. 32, 1081-1093 (2011).
  • [24] T.Z. Blazynski, Elsevier, New York (1983).
  • [25] Q. Zhou, J. Feng, P. Chen, Materials 10, 984 (2017).
  • [26] V.I. Lysak, S.V. Kuzmin. J. Mater. Process. Tech. 222, 356-364 (2015).
  • [27] C. Borchers, M. Lenz, M. Deutges, H. Klein, F. Gärtner, M. Hammerschmidt, H. Kreye, Mater. Des. 89, 369-376 (2016).
  • [28] R. Mendes, J.B. Ribeiro, A. Loureiro, Mater. Des. 51, 182-192 (2013).
  • [29] A. Durgutlu, H. Okuyucu, B. Gulenc, Mater. Des. 29, 1480-1484 (2008).
  • [30] M. Yang, H. Ma, Z. Shen, Int. J. Adv. Manuf. Technol. 99, 3123-3132 (2018).
  • [31] GB/T6396-2008, China National Standardization Management Committee, May 13, 2008.
  • [32] H.B. Xia, S.G. Wang, H.F. Ben, Mater. Des. 56, 1014-1019 (2014).
  • [33] Bina, M. Hosein, F. Dehghani, M. Salimi, Mater. Des. 45, 504-509 (2013).
  • [34] S.A.A.A. Mousavi, S.T.S. Al-Hassani, Mater. Des. 29, 1-19 (2008).
  • [35] A.A. Deribas, V.M. Kudinov, F.I. Matveenkov, Combust. Explo. Shock Waves 3, 344-348 (1967).
  • [36] A.A. Mousavi, S.T.S. Al-Hassani, J. Mech. Phys. Solids. 53, 2501-2528 (2005).
  • [37] H. Paul, L. Lityńska-Dobrzyńska, M. Prażmowski, Metall. Mater. Trans. A. 44, 3836-3851 (2013).
  • [38] P. Manikandan, K. Hokamoto, A.A. Deribas, K. Raghukandan, R. Tomoshige, Mater. Trans. 47, 2049-2055 (2006).
  • [39] M.M. Hoseini-Athar, B. Tolaminejad, Met. Mater. Int. 22, 670-680 (2016).
  • [40] N. Kahraman, B. Gülenç, F. Findik, J. Mater. Process. Tech. 169, 127-133 (2005).
  • [41] H. Paul, M.M. Miszczyk, R. Chulist, M. Prażmowski, J. Morgiel, A. Gałka, F. Brisset. Mater. Des. 153, 177-189 (2018).
  • [42] H. Paul, J. Morgiel, M. Faryna, M. Prażmowski, M.M. Miszczyk, Int. J. Mater. res. 106, 782-792 (2015).
  • [43] I.A. Bataev, S. Tanaka, Q. Zhou, D.V. Lazurenko, A.J. Junior, A.A. Bataev, P. Chen, Mater. Des. 169, 107649 (2019).
  • [44] I.A. Bataev, D.V Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge Jr, Acta Materialia 135, 277-289 (2017).
Uwagi
1. The reported research is supported by Natural Science Foundation of the Anhui Higher Education Institution (No. KJ2021A0461), Independent subject of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (No. SKLMRDPC20ZZ07), Natural Science Foundation of Anhui Province (No. 2108085Qa40), University-level key projects of Anhui University of Science and Technology (No. xjzd2020-03).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-987ebb66-fad5-4d0b-a0f9-710f8e89f00c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.