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Abstract

Artificial Potential Filed (APF) is the most well-known method that is used in mobile
robot path planning, however, the shortcoming is that the local minima. To overcome this
issue, we present a deadlock free APF based path planning algorithm for mobile robot
navigation. The Proposed-APF (P-APF) algorithm searches the goal point in unknown
2D environments. This method is capable of escaping from deadlock and non-reachability
problems of mobile robot navigation. In this method, the effective front-face obstacle in-
formation associated with the velocity direction is used to modify the Traditional APF
(T-APF) algorithm. This modification solves the deadlock problem that the T-APF algo-
rithm often converges to local minima. The proposed algorithm is explained in details
and to show the effectiveness of the proposed approach, the simulation experiments were
carried out in the MATLAB environment. Furthermore, the numerical analysis of the
proposed approach is given to prove a deadlock free motion of the mobile robot.

1 Introduction

Path planning and obstacle avoidance for mo-
bile robot navigation are challenging topics; and ef-
ficient and simple but precise algorithm is important
in path planning. Both preventing any of the robot
obstacle collision and guaranteeing that the robot
reaches the goal are important facts when getting
the robot to seek the goal.

Hwang Y.K et.al. [1] classified the path plan-
ning problems as static and dynamic depending on
the environmental information available. In static
problems, all the environmental information (obsta-
cles) is known a priori the motion with no changes.
In dynamic problems, no a priori environmental in-
formation is given or known partially, i.e. the visi-
ble parts of the obstacles.

In mobile robot path planning problems, vari-
ous approaches such as; Visibility Graph (VG) [2],

Voronoi Diagram (VD) [3, 4], Artificial Potential
Field (APF) [5-9], Virtual Force Field (VFF) [10],
Virtual Force Histogram (VFH) [11-14], classi-
cal Wall-Following (WF) [15-18], Neural Network-
based approach (NN) [19, 20], Fuzzy Logic (FL)
[21, 22] etc. are proposed in literature. These
path planning algorithms can be categorized into
two based on the two aspects of completeness and
the scope [1, 23-28]. From the completeness point
of view, algorithms can be categorized as classi-
cal or heuristic. Classical algorithms aim to find
an optimal path if exists or prove that there is no
solution. Heuristic algorithms try to find a better
path in a short time but do not guarantee to find
a solution always [1, 29]. However, the most of
the classical methods are computationally expen-
sive and heuristic methods can fail in complex en-
vironments. Depending on the scope, path planning
algorithms are classified into two broad categories
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Figure 1. Taxonomy of mobile robot path planning algorithms

as global path planning (deliberative paradigm) and
local path planning (reactive paradigm) [1, 23-27].
A basic hierarchical classification of the path plan-
ning algorithms is given in Figure 1. The algorithms
listed in Figure 1 are not tightly stick to the classifi-
cation because this provides a basic categorization
only; e.g. APF can also be categorized as a global
path planning method. A fundamental comparison
of some of the path planning methods is given in the
Table 1.

Global path planning usually generates a hazard
free path for the robot based on a previously known
map. These methods have the completeness prop-
erty which means that they are capable to find a path
if it exists. Most of these methods are convergent in
static environments. However, they can lose the ef-
fectiveness if an unpredicted obstacle appears in the
path as a result of not including the obstacle infor-
mation in the known map. Hence there is no guar-
antee for a collision free motion. When an unfore-
seen obstacle blocks the planned path, re-planning
is required and it results a computationally taxing
specially in unknown or dynamic environments. In
addition, the complexity of the environment leads
the increase of computational time of global path
planning algorithms.

On the other hand, local path planning meth-
ods directly use local sensory and their basic as-
sumption is that the robot has no a priori knowl-
edge about the environment or partial information.
Since the map of the environment is not available
the entire control actions are tightly based on the

perception of the robot’s surrounding environment.
These algorithms demand low computational effort
and also the mobile robot can perceive the environ-
mental change and decides the path in real time. Lo-
cal methods are sometimes used as a component of
the global planning methods or as a safety feature to
avoid collision from unexpected obstacles. One dis-
advantage associated with the local path planning is
the completeness problem.

In recent years, robotic applications have been
shifting from industrial environments into some
challenging scenarios like domestic applications
and space/deep-sea exploration. In these settings,
it is not possible to identify all the obstacles in the
environment a priori to apply global path planner.
Therefore, the global path planning methods are not
suitable for this kind of applications. Instead, it is
necessary to establish path planning methods which
can handle both the discovery of new obstacle infor-
mation in real-time and being fast enough to pro-
cess this information to compute the path online. In
contrast to any other local path planning methods,
robot path planning using APF is able to consider
the problem of obstacle avoidance and path plan-
ning simultaneously.

Reach to the goal while avoiding collision with
the obstacles in known or unknown environments
is the task of the path planning algorithm of mo-
bile robot navigation. In that sense, in addition
to the above mentioned capabilities of simultane-
ous path planning and obstacle avoidance, the at-
tractive mathematical representation and concep-

2 Related Work 
Path planning is such an important 

component in any mobile robot system; it is 
not surprising that many different approaches 
have been suggested in literature. In this 
section, we discuss briefly the APF-based path 
planning techniques which are proposed to 
solve the path planning problem.  

After the APF method was being introduced 
by Khatib [5], many researchers made through 
study and a number of improved methods have 
been proposed to overcome its inherit 
shortcomings such as the local minima. There 
exist a large number of attempts for solving 
this issue. We can basically divide them into 
two prevailing categories of approaches 
depending on the technical concepts: the first 
is looking for better potential field instead of 
the T-APF by modifying or deriving new 

potential function (Modified/new APF 
approach); the second is the combined 
approach of APF with other techniques 
(Combined APF approach).   

2.1 Modified/New APF Approach 
One of the ideas is to modify the T-APF in 

order to escape from local minima problem 
and the other is to introduce a new potential 
function for the robot navigation.  

S. S. Ge et al. [9] presented a modified 
repulsive potential function for path planning 
by taking into account the relative distance 
between the robot and the goal. The new 
repulsive force component attracts the robot 
towards the goal while the other component 
repulses the robot away from the obstacle. This 
work has confined the attention to solve the 
goal non-reachability due to obstacle nearby 
(GNRON) problems only.  
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Table 1: Comparison of mobile robot path planning algorithms 
Algorithm Advantage Disadvantage 

APF Real-time, 2D or 3D, point/ rigid robot Not-complete, non-optimal, local minima 
CD Complete, sound, 2D and 3D, point or rigid 

robot 
Non-optimal, Heavy computation, time 

ECD Complete, 2D, point robot Non-optimal, Heavy computation, time 
ACD Low computation, 2D, point robot Not-optimal, not-complete 
VG Complete, optimal length path, 2D or 3D, 

point robot, static environment 
Non-optimal, heavy computation, time 

complexity, path closer to obstacles 
VD Complete, safer path, 2D or arbitrary, point 

robot 
Non-optimal, long range sensor for local path 

planning. 
Bug Complete, 2D, point robot Non-optimal, long path, time complexity 

Heuristic Less time, parallel search, point robot Not-complete, not sound 
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Figure 1. Taxonomy of mobile robot path planning algorithms

as global path planning (deliberative paradigm) and
local path planning (reactive paradigm) [1, 23-27].
A basic hierarchical classification of the path plan-
ning algorithms is given in Figure 1. The algorithms
listed in Figure 1 are not tightly stick to the classifi-
cation because this provides a basic categorization
only; e.g. APF can also be categorized as a global
path planning method. A fundamental comparison
of some of the path planning methods is given in the
Table 1.

Global path planning usually generates a hazard
free path for the robot based on a previously known
map. These methods have the completeness prop-
erty which means that they are capable to find a path
if it exists. Most of these methods are convergent in
static environments. However, they can lose the ef-
fectiveness if an unpredicted obstacle appears in the
path as a result of not including the obstacle infor-
mation in the known map. Hence there is no guar-
antee for a collision free motion. When an unfore-
seen obstacle blocks the planned path, re-planning
is required and it results a computationally taxing
specially in unknown or dynamic environments. In
addition, the complexity of the environment leads
the increase of computational time of global path
planning algorithms.

On the other hand, local path planning meth-
ods directly use local sensory and their basic as-
sumption is that the robot has no a priori knowl-
edge about the environment or partial information.
Since the map of the environment is not available
the entire control actions are tightly based on the

perception of the robot’s surrounding environment.
These algorithms demand low computational effort
and also the mobile robot can perceive the environ-
mental change and decides the path in real time. Lo-
cal methods are sometimes used as a component of
the global planning methods or as a safety feature to
avoid collision from unexpected obstacles. One dis-
advantage associated with the local path planning is
the completeness problem.

In recent years, robotic applications have been
shifting from industrial environments into some
challenging scenarios like domestic applications
and space/deep-sea exploration. In these settings,
it is not possible to identify all the obstacles in the
environment a priori to apply global path planner.
Therefore, the global path planning methods are not
suitable for this kind of applications. Instead, it is
necessary to establish path planning methods which
can handle both the discovery of new obstacle infor-
mation in real-time and being fast enough to pro-
cess this information to compute the path online. In
contrast to any other local path planning methods,
robot path planning using APF is able to consider
the problem of obstacle avoidance and path plan-
ning simultaneously.

Reach to the goal while avoiding collision with
the obstacles in known or unknown environments
is the task of the path planning algorithm of mo-
bile robot navigation. In that sense, in addition
to the above mentioned capabilities of simultane-
ous path planning and obstacle avoidance, the at-
tractive mathematical representation and concep-

AN ARTIFICIAL POTENTIAL FIELD BASED MOBILE ROBOT . . .

tual simplicity has made APF popular in path plan-
ning. However the APF based path planning algo-
rithm exhibits inherit local minima problem where
the robot can trap in another position away from its
goal. Some methods are introduced in order to over-
come this problem associated with the APF based
path planning [9, 32-48].

The primary motivation behind this work is to
propose a new APF based algorithm to eliminate the
shortcomings of the T-APF algorithm in robot path
planning. The proposed method consists of insert-
ing the robot’s motion direction and the front-face
obstacle information into the APF algorithm. This
creates an additional control for the robot and that
will help robot to prevent from the deadlock issue.

The remainder of this paper is organized as fol-
lows. In Section 2, related work on path planning
with APF is discussed. The proposed path plan-
ning method is explained in Section 3. In this sec-
tion, the basic conceptual and mathematical dis-
cussion of the T-APF and P-APF methods are ex-
plained. In Section 4, simulation experiments are
discussed to show the effectiveness of the proposed
algorithm over conventional method together with
the results analysis and discussion. Numerical anal-
ysis to prove the deadlock escaping capability of
proposed method is given in Section 5 and the con-
clusion in the Section 6.

2 Related Work

Path planning is such an important component
in any mobile robot system; it is not surprising that
many different approaches have been suggested in
literature. In this section, we discuss briefly the
APF-based path planning techniques which are pro-
posed to solve the path planning problem.

After the APF method was being introduced by
Khatib [5], many researchers made through study
and a number of improved methods have been pro-
posed to overcome its inherit shortcomings such as
the local minima. There exist a large number of
attempts for solving this issue. We can basically
divide them into two prevailing categories of ap-
proaches depending on the technical concepts: the
first is looking for better potential field instead of
the T-APF by modifying or deriving new potential
function (Modified/new APF approach); the second

is the combined approach of APF with other tech-
niques (Combined APF approach).

2.1 Modified/New APF Approach

One of the ideas is to modify the T-APF in order
to escape from local minima problem and the other
is to introduce a new potential function for the robot
navigation.

S. S. Ge et al. [9] presented a modified repul-
sive potential function for path planning by taking
into account the relative distance between the robot
and the goal. The new repulsive force component
attracts the robot towards the goal while the other
component repulses the robot away from the obsta-
cle. This work has confined the attention to solve
the goal non-reachability due to obstacle nearby
(GNRON) problems only.

Chen L. [31] introduced a virtual obstacle based
improved APF for path planning of UUV (Un-
manned Underwater Vehicle). First they deter-
mined that the UUV is trapped in local minima
range, and then a virtual obstacle point was intro-
duced. This virtual obstacle helps to change the
magnitude and the direction of the artificial force
and hence to escape from the local minima.

An information potential method for integrated
path planning and control has been proposed by
Wenjie L. et al. [32]. Their new approach uses in-
formation roadmap to escape from the local minima
while increasing the probability of obtaining sensor
measurements, subjected to the robot kinematics.

Doria et al. [33] reported a method inspired
by the Deterministic Annealing (DA) approach to
avoid local minima in APF and they have intro-
duced a temperature parameter (T) into the cost
function of T-APF. The insertion of the T into the
cost function causes an increase of repulsion area of
the obstacle and a reduction of the attraction area of
the goal. DA approach is employed to avoid the ran-
dom movement over the cost function surface un-
like simulated annealing approach. When the robot
gets stuck at a local minima point the value of the T
started to increase until robot escapes from the local
minima point.

An improved APF based on regression search
method to solve the local minima and oscillations
in completely known environments has been dis-
cussed by Guanghui et al. [34]. At the same time,
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algorithm finds the optimal path for the robot by
connecting the sequential way points on straight
lines. Local target points are introduced in order
to avoid from oscillations.

An online deadlock avoidance method was pre-
sented by Chang et al. [35] for wheeled mobile
robot with the presence of boxlike obstacles esti-
mated using Hough transformation. By redefin-
ing the repulsive potential field, the local minima
problem has been solved. They introduced multi-
obstacles into one big obstacle that cause the dead-
lock. This provides robot to escape from the dead-
lock.

An obstacle avoidance algorithm in an unknown
static environment using APF has been proposed by
Chunshu et al. [36]. This method was devised by
combining APF with grid method and used to solve
local minima problem and oscillations in static en-
vironment. The algorithm proposed herein com-
putes the potential function value for each cell sur-
rounding the robot cell and selects the cell with
minimal value. When the robot is in the minimal
value, the value of the cell is increased to escape
from local minima.

Razaee H. et al. [37] introduced an adaptive
APF approach for obstacle avoidance of unmanned
aircrafts. The proposed potential field depends on
the attitude of the aircraft and its relative posi-
tion to the obstacle. They used a rotating poten-
tial field around the obstacle and simulation results
were shown to prove the feasibility of the proposed
method.

Random force based algorithm for local minima
escape of APF approach was proposed by Lee et
al. [38]. They addressed the symmetrically aligned
robot-obstacle-goal situation where the deadlock
takes place. When the robot is trapped at the lo-
cal minima; the random force algorithm was used
to escape from it.

A path planning algorithm based on the fluid
mechanics was presented by Gingras D. et al. [39].
This algorithm uses the finite element method to
compute a velocity potential function free from lo-
cal minima. Several streamlines were computed as
a road map and the optimal path was selected.

2.2 Combined APF Approach

Researchers have put the effort to propose ver-
ity of improvements by combining techniques for
the imperfections of the T-APF algorithm.

Song et al. [40] proposed a modified potential
field integrating the fuzzy control to overcome the
shortcomings of the T-APF based algorithms. Re-
pulsive force has been modified with two regulatory
factors where one is affected by the distance and
second is affected by the speed of the robot. Fuzzy
control method was utilized to achieve the regula-
tory factor adjustment. One issue associated with
this method is the computational time.

An Evolutionary APF combined with genetic
algorithm for optimum path planning and an
escape-force algorithm to escape from local min-
ima was proposed by Vadakkepat P. et al. [41] for
real time mobile robot path planning. When a lo-
cal minimum is identified under certain conditions

2 Related Work 
Path planning is such an important 

component in any mobile robot system; it is 
not surprising that many different approaches 
have been suggested in literature. In this 
section, we discuss briefly the APF-based path 
planning techniques which are proposed to 
solve the path planning problem.  

After the APF method was being introduced 
by Khatib [5], many researchers made through 
study and a number of improved methods have 
been proposed to overcome its inherit 
shortcomings such as the local minima. There 
exist a large number of attempts for solving 
this issue. We can basically divide them into 
two prevailing categories of approaches 
depending on the technical concepts: the first 
is looking for better potential field instead of 
the T-APF by modifying or deriving new 

potential function (Modified/new APF 
approach); the second is the combined 
approach of APF with other techniques 
(Combined APF approach).   

2.1 Modified/New APF Approach 
One of the ideas is to modify the T-APF in 

order to escape from local minima problem 
and the other is to introduce a new potential 
function for the robot navigation.  

S. S. Ge et al. [9] presented a modified 
repulsive potential function for path planning 
by taking into account the relative distance 
between the robot and the goal. The new 
repulsive force component attracts the robot 
towards the goal while the other component 
repulses the robot away from the obstacle. This 
work has confined the attention to solve the 
goal non-reachability due to obstacle nearby 
(GNRON) problems only.  
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Table 1: Comparison of mobile robot path planning algorithms 
Algorithm Advantage Disadvantage 

APF Real-time, 2D or 3D, point/ rigid robot Not-complete, non-optimal, local minima 
CD Complete, sound, 2D and 3D, point or rigid 

robot 
Non-optimal, Heavy computation, time 

ECD Complete, 2D, point robot Non-optimal, Heavy computation, time 
ACD Low computation, 2D, point robot Not-optimal, not-complete 
VG Complete, optimal length path, 2D or 3D, 

point robot, static environment 
Non-optimal, heavy computation, time 

complexity, path closer to obstacles 
VD Complete, safer path, 2D or arbitrary, point 

robot 
Non-optimal, long range sensor for local path 

planning. 
Bug Complete, 2D, point robot Non-optimal, long path, time complexity 

Heuristic Less time, parallel search, point robot Not-complete, not sound 
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algorithm finds the optimal path for the robot by
connecting the sequential way points on straight
lines. Local target points are introduced in order
to avoid from oscillations.

An online deadlock avoidance method was pre-
sented by Chang et al. [35] for wheeled mobile
robot with the presence of boxlike obstacles esti-
mated using Hough transformation. By redefin-
ing the repulsive potential field, the local minima
problem has been solved. They introduced multi-
obstacles into one big obstacle that cause the dead-
lock. This provides robot to escape from the dead-
lock.

An obstacle avoidance algorithm in an unknown
static environment using APF has been proposed by
Chunshu et al. [36]. This method was devised by
combining APF with grid method and used to solve
local minima problem and oscillations in static en-
vironment. The algorithm proposed herein com-
putes the potential function value for each cell sur-
rounding the robot cell and selects the cell with
minimal value. When the robot is in the minimal
value, the value of the cell is increased to escape
from local minima.

Razaee H. et al. [37] introduced an adaptive
APF approach for obstacle avoidance of unmanned
aircrafts. The proposed potential field depends on
the attitude of the aircraft and its relative posi-
tion to the obstacle. They used a rotating poten-
tial field around the obstacle and simulation results
were shown to prove the feasibility of the proposed
method.

Random force based algorithm for local minima
escape of APF approach was proposed by Lee et
al. [38]. They addressed the symmetrically aligned
robot-obstacle-goal situation where the deadlock
takes place. When the robot is trapped at the lo-
cal minima; the random force algorithm was used
to escape from it.

A path planning algorithm based on the fluid
mechanics was presented by Gingras D. et al. [39].
This algorithm uses the finite element method to
compute a velocity potential function free from lo-
cal minima. Several streamlines were computed as
a road map and the optimal path was selected.

2.2 Combined APF Approach

Researchers have put the effort to propose ver-
ity of improvements by combining techniques for
the imperfections of the T-APF algorithm.

Song et al. [40] proposed a modified potential
field integrating the fuzzy control to overcome the
shortcomings of the T-APF based algorithms. Re-
pulsive force has been modified with two regulatory
factors where one is affected by the distance and
second is affected by the speed of the robot. Fuzzy
control method was utilized to achieve the regula-
tory factor adjustment. One issue associated with
this method is the computational time.

An Evolutionary APF combined with genetic
algorithm for optimum path planning and an
escape-force algorithm to escape from local min-
ima was proposed by Vadakkepat P. et al. [41] for
real time mobile robot path planning. When a lo-
cal minimum is identified under certain conditions
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defined herein, an additional escape force was in-
troduced for the algorithm.

A new real-time navigation approach by com-
bining APF with interval type-2 Fuzzy logic system
has been proposed by Melingui et al. [42]. In their
work, orientation angle relative to the goal was con-
sidered to determine the probability of encountering
the local minima. When the robot finds a trapping
situation, fuzzy logic was used to escape from it.

Ji-Wung [43] suggested a potential field called
bug potential filed which is a combination of the
potential field with bug algorithm to overcome the
local minima and path inefficiency problem in path
planning in known environments. In this method
the direction of the virtual forces to guide the robot
along the path boundaries of the obstacles are de-
termined by applying the visibility graph and the
collision cone. Curvature weighted Dijkstra’s short-
est path algorithm was run on the visibility graph to
find the optimum path.

An improved tangent bug (ITB) algorithm in-
tegrated with a potential filed to avoid from local
minima issue encountered in T-APF based real-time
path planning was proposed by Mohamed E.F. et al.
[44]. In their method, they have introduced switch-
ing and merging conditions to guarantee a dead-
lock free motion. The behavior of their algorithm
is classified into two modes, namely, direct motion
towards the goal using APF and boundary follow-
ing mode using ITB algorithm to avoid static obsta-
cles. Switching mechanism introduced was used to
overcome the local minima problem and to find the
shortest path in the motion.

3 The Proposed Path Planning Al-
gorithm

Aiming to the shortcoming of the T-APF
method, an algorithm has been proposed by inte-
grating more information into it. In this paper, we
propose an APF based path planning method which
helps the robot to perform a dead-lock free motion.

3.1 Overview of the Traditional APF (T-
APF)

The APF is commonly used in path planning
algorithms for autonomous mobile robots and the

APF can be treated as a landscape with several
mountains generated by the obstacles and valleys
where the lowest valley point represents the goal
point. In the domain of robot path planning, robot
is considered as a particle that moves from a high
potential point via low potentials towards the goal.

APF consists of two fields: attractive field gen-
erated by the goal and repulsive field by each of the
obstacles. When the robot immersed in the poten-
tial field, attractive force and repulsive force guide
the robot towards the goal point. This combination
of two forces is dedicated to control the motion of
the robot in a safer path while keeping it away from
the obstacles. Figure 2 represents the attractive po-
tential and repulsive potential force distribution on
the robot for a single obstacle existing in the envi-
ronment.

3.1.1 Attractive Force

To simplify the path planning problem, the
robot is often viewed as a mass point. The position
of the robot and the goal can be expressed as vec-
tors of pr = [xr,yr]

T and pg = [xg,yg]
T respectively.

Attractive force that is produced by the goal can be
expressed using the Gaussian function as in Eq. (1).

Fatt = ag
[
1− exp

(
−bg ·d2

g
)]

· eg (1)

Figure 2. Force distribution of T-APF.

Where agis the maximum value of the attractive
force Fatt at any instance and bg is a constant that
represents the width of the distribution. The param-

eter dg =
√

(xr − xg)
2 +(yr − yg)

2 is the Euclidean
distance between the robot and the goal. egdefines

et al. [41] for real time mobile robot path 
planning. When a local minimum is identified 
under certain conditions defined herein, an 
additional escape force was introduced for the 
algorithm.    

A new real-time navigation approach by 
combining APF with interval type-2 Fuzzy 
logic system has been proposed by Melingui et 
al. [42]. In their work, orientation angle 
relative to the goal was considered to 
determine the probability of encountering the 
local minima. When the robot finds a trapping 
situation, fuzzy logic was used to escape from 
it.    

Ji-Wung [43] suggested a potential field 
called bug potential filed which is a 
combination of the potential field with bug 
algorithm to overcome the local minima and 
path inefficiency problem in path planning in 
known environments. In this method the 
direction of the virtual forces to guide the robot 
along the path boundaries of the obstacles are 
determined by applying the visibility graph and 
the collision cone.  Curvature weighted 
Dijkstra’s shortest path algorithm was run on 
the visibility graph to find the optimum path. 

An improved tangent bug (ITB) algorithm 
integrated with a potential filed to avoid from 
local minima issue encountered in T-APF 
based real-time path planning was proposed by 
Mohamed E.F. et al. [44]. In their method, they 
have introduced switching and merging 
conditions to guarantee a deadlock free 
motion. The behavior of their algorithm is 
classified into two modes, namely, direct 
motion towards the goal using APF and 
boundary following mode using ITB algorithm 
to avoid static obstacles. Switching mechanism 
introduced was used to overcome the local 
minima problem and to find the shortest path 
in the motion.  

3 The Proposed Path Planning 
Algorithm 

Aiming to the shortcoming of the T-APF 
method, an algorithm has been proposed by 
integrating more information into it. In this 
paper, we propose an APF based path planning 
method which helps the robot to perform a 
dead-lock free motion. 

3.1 Overview of the Traditional 
APF (T-APF) 

The APF is commonly used in path planning 
algorithms for autonomous mobile robots and 
the APF can be treated as a landscape with 
several mountains generated by the obstacles 
and valleys where the lowest valley point 
represents the goal point. In the domain of 
robot path planning, robot is considered as a 
particle that moves from a high potential point 
via low potentials towards the goal. 

APF consists of two fields: attractive field 
generated by the goal and repulsive field by 
each of the obstacles. When the robot 
immersed in the potential field, attractive force 
and repulsive force guide the robot towards the 
goal point. This combination of two forces is 
dedicated to control the motion of the robot in 
a safer path while keeping it away from the 
obstacles. Figure 2 represents the attractive 
potential and repulsive potential force 
distribution on the robot for a single obstacle 
existing in the environment. 

3.1.1 Attractive Force  
To simplify the path planning problem, the 

robot is often viewed as a mass point. The 
position of the robot and the goal can be 
expressed as vectors of  , T

r rx yrp and 

,
T

g g gx y   p respectively. Attractive force that 
is produced by the goal can be expressed using 
the Gaussian function as in Eq. (1). 
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Figure 2: Force distribution of T-APF. 
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the unit vector towards the goal point, and it can be
expressed as in Eq. (2).

eg =
1
dg

(∆xgi+∆ygj) (2)

Where ∆xg = xg − xrand ∆yg = yg − yr.

3.1.2 Repulsive Force

The repulsive potential force generated by the
kth obstacle can be described as in Eq. (3).

kFrep =

{
ao

[
exp

(
−bo · kd2

o
)]

· keg i f kdo ≤ dd
0 else

(3)

Where ao is defined as the maximum value of
the repulsive force kFrep generated by the kth obsta-
cle and bo is a constant that represents the width of
the distribution. The parameter kdo is the Euclidean
distance between the robot and each detected ob-
stacle points, and dd is defined as the influence dis-
tance around the robot. eo is the unit vector towards
the robot from the kth obstacle and it can be ex-
pressed as in Eq. (4).

keo =
1

kdo

(
∆kxoi+∆kyoj

)
(4)

Where∆kxo = xr − kxoand ∆kyo = yr − kyo.

In fact, the total repulsive force can be defined
as a result of the superposition of all the individual
repulsive forces generated by the obstacles as in Eq.
(6).

Ftot = Fatt +∑
k

kFrep (5)

Although the APF can perform its behavior well
in path planning, it has some fatal problems. One of
the main issues associated with this APF is the lo-
cal minima problem which is in real called as dead-
lock. This happens when the total potential force
becomes zero before its goal position. Therefore,
this causes trapping the robot at local minima away
from the goal. Deadlock can happen with the T-
APF (a) collinear alignment of robot-obstacle-goal,
(b) symmetrical distribution of the obstacle around
the robot-goal line and (c) obstacle nearby the goal;
for example.

3.2 Proposed APF Algorithm (P-APF)

In order to prevent from the deadlock issue as-
sociated with the T-APF based path planning algo-
rithm a new approach is proposed. The modifica-
tion is done for the repulsive force taking into ac-
count the front-face obstacle-velocity information
of the robot. The new information added gener-
ates an additional controlling repulsive force to the
path planning algorithm which is called obstacle-
velocity repulsive force, kFrep new (from the kth ob-
stacle). The basic overview of the force distribution
of proposed modification for a single obstacle case
is explained in the Figure 3.

The obstacle-velocity repulsive force has a di-
rect relationship to the angle δ between the line
connects the robot-obstacle and the velocity vec-
tor, besides the distance to the obstacles. This acts
perpendicular to the original repulsive force and its
magnitude varies with the angle of δ (see Figure
3). When the robot detects an obstacle within its
sensory range, a new repulsive force (kFrep new) ap-
pears in addition to the primary force. The new re-
pulsive force component behaves to turn the robot
smoothly away from the obstacles in addition to the
characteristics of the original repulsive force. This
behavior always leads the robot towards the goal di-
rection only.

Figure 3. Overview phenomena of the P-APF and
force distribution.

This characteristic of the new repulsive force al-
ways assists the robot to escape from the deadlock
positions (local minima) in the motion. New repul-
sive force kFrep new by the kth obstacle is defined
as in Eq. (6) and kFrep as same as in Eq. (3). The
new repulsive force consists of obstacle-velocity in-

Where ga is the maximum value of the 
attractive force attF  at any instance and gb  is a 
constant that represents the width of the 
distribution. The parameter 

   2 2

g r g r gd x x y y     is the Euclidean 
distance between the robot and the goal. ge
defines the unit vector towards the goal point, 
and it can be expressed as in Eq. (2). 

 1
g g

g

x y
d
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Where g g rx x x   and g g ry y y   . 

3.1.2 Repulsive Force 
The repulsive potential force generated by 

the kth obstacle can be described as in Eq. (3). 
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Where oa is defined as the maximum value 
of the repulsive force k

repF  generated by the kth 
obstacle and ob  is a constant that represents the 
width of the distribution. The parameter k

od  is 
the Euclidean distance between the robot and 
each detected obstacle points, and dd is defined 
as the influence distance around the robot. oe is 
the unit vector towards the robot from the kth 

obstacle and it can be expressed as in Eq. (4). 
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Where k k
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 In fact, the total repulsive force can be 
defined as a result of the superposition of all 
the individual repulsive forces generated by the 
obstacles as in Eq. (5). 

k
  k

tot att repF F F          (5) 

Although the APF can perform its behavior 
well in path planning, it has some fatal 
problems. One of the main issues associated 
with this APF is the local minima problem 
which is in real called as deadlock. This 
happens when the total potential force becomes 
zero before its goal position. Therefore, this 
causes trapping the robot at local minima away 
from the goal. Deadlock can happen with the 

T-APF (a) collinear alignment of robot-
obstacle-goal, (b) symmetrical distribution of 
the obstacle around the robot-goal line and (c) 
obstacle nearby the goal; for example. 

3.2 Proposed APF Algorithm (P-
APF) 

In order to prevent from the deadlock issue 
associated with the T-APF based path planning 
algorithm a new approach is proposed. The 
modification is done for the repulsive force 
taking into account the front-face obstacle-
velocity information of the robot. The new 
information added generates an additional 
controlling repulsive force to the path planning 
algorithm which is called obstacle-velocity 
repulsive force, _

k
rep newF (from the kth obstacle). 

The basic overview of the force distribution of 
proposed modification for a single obstacle 
case is explained in the Figure 3. 

The obstacle-velocity repulsive force has a 
direct relationship to the angle δ between the 
line connects the robot-obstacle and the 
velocity vector, besides the distance to the 
obstacles. This acts perpendicular to the 
original repulsive force and its magnitude 
varies with the angle of δ (see Figure 3). When 
the robot detects an obstacle within its sensory 
range, a new repulsive force ( _

k
rep newF ) appears 

in addition to the primary force. The new 
repulsive force component behaves to turn the 
robot smoothly away from the obstacles in 
addition to the characteristics of the original 
repulsive force. This behavior always leads the 
robot towards the goal direction only. 
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Figure 3: Overview phenomena of the P-APF 
and force distribution. 
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the unit vector towards the goal point, and it can be
expressed as in Eq. (2).

eg =
1
dg

(∆xgi+∆ygj) (2)

Where ∆xg = xg − xrand ∆yg = yg − yr.

3.1.2 Repulsive Force

The repulsive potential force generated by the
kth obstacle can be described as in Eq. (3).

kFrep =

{
ao

[
exp

(
−bo · kd2

o
)]

· keg i f kdo ≤ dd
0 else

(3)

Where ao is defined as the maximum value of
the repulsive force kFrep generated by the kth obsta-
cle and bo is a constant that represents the width of
the distribution. The parameter kdo is the Euclidean
distance between the robot and each detected ob-
stacle points, and dd is defined as the influence dis-
tance around the robot. eo is the unit vector towards
the robot from the kth obstacle and it can be ex-
pressed as in Eq. (4).

keo =
1

kdo

(
∆kxoi+∆kyoj

)
(4)

Where∆kxo = xr − kxoand ∆kyo = yr − kyo.

In fact, the total repulsive force can be defined
as a result of the superposition of all the individual
repulsive forces generated by the obstacles as in Eq.
(6).

Ftot = Fatt +∑
k

kFrep (5)

Although the APF can perform its behavior well
in path planning, it has some fatal problems. One of
the main issues associated with this APF is the lo-
cal minima problem which is in real called as dead-
lock. This happens when the total potential force
becomes zero before its goal position. Therefore,
this causes trapping the robot at local minima away
from the goal. Deadlock can happen with the T-
APF (a) collinear alignment of robot-obstacle-goal,
(b) symmetrical distribution of the obstacle around
the robot-goal line and (c) obstacle nearby the goal;
for example.

3.2 Proposed APF Algorithm (P-APF)

In order to prevent from the deadlock issue as-
sociated with the T-APF based path planning algo-
rithm a new approach is proposed. The modifica-
tion is done for the repulsive force taking into ac-
count the front-face obstacle-velocity information
of the robot. The new information added gener-
ates an additional controlling repulsive force to the
path planning algorithm which is called obstacle-
velocity repulsive force, kFrep new (from the kth ob-
stacle). The basic overview of the force distribution
of proposed modification for a single obstacle case
is explained in the Figure 3.

The obstacle-velocity repulsive force has a di-
rect relationship to the angle δ between the line
connects the robot-obstacle and the velocity vec-
tor, besides the distance to the obstacles. This acts
perpendicular to the original repulsive force and its
magnitude varies with the angle of δ (see Figure
3). When the robot detects an obstacle within its
sensory range, a new repulsive force (kFrep new) ap-
pears in addition to the primary force. The new re-
pulsive force component behaves to turn the robot
smoothly away from the obstacles in addition to the
characteristics of the original repulsive force. This
behavior always leads the robot towards the goal di-
rection only.

Figure 3. Overview phenomena of the P-APF and
force distribution.

This characteristic of the new repulsive force al-
ways assists the robot to escape from the deadlock
positions (local minima) in the motion. New repul-
sive force kFrep new by the kth obstacle is defined
as in Eq. (6) and kFrep as same as in Eq. (3). The
new repulsive force consists of obstacle-velocity in-

AN ARTIFICIAL POTENTIAL FIELD BASED MOBILE ROBOT . . .

formation K (δ), robot turning direction towards the
goal by eFV and the information of the basic obsta-
cle distance. The unit vector eFV defined as in Eq.
(7) represents the relationship between the attrac-
tive force and the robot’s velocity. This will deter-
mine the direction for kFrep new to appear either left
or right side of the robot.

kFrep new = K (δ) ·
(
eFV × kFrep

)
(6)

eFV =
Fatt ×Vr

∥Fatt∥∥Vr∥sinθ
(7)

K (δ) =
kmax[

1+ exp
(

δ/τ
)] (8)

The magnitude of the new repulsive force varies
not only with the distance to the obstacles, but
also with the angle δ. The governing mathematical
equation of the obstacle-velocity information K (δ)
can be expressed as in Eq. (8). The variation of
K (δ) with the angle δ is shown in Figure 4. The
maximum value of the angle δ can be pre-defined
according to our definition of the information range.
As the value of δ is zero, the value of the function
K (δ) has its maximum value. When δ increases, in
other words, as the robot is heading away from the
obstacles, the value of the K (δ) decreases exponen-
tially and it reaches zero when δ=δmax which is a
pre-defined value (=120 in this experiment). The
characteristics of the function K (δ) depend on the
parameter values of kmax, τ and δ. Those values
should be properly defined in order to get the proper
functionality of K (δ).

The P-APF algorithm also has the integrated ca-
pability to guide the robot properly towards the goal
when there is an obstacle closer to it. As shown in
the Eq. (9), when the robot-goal distance dg is less
than the robot-obstacle distance do within the ob-
stacle detecting range dd , robot considers only the
attractive force for its motion.

Figure 4. Variation of K (δ) with the angle δ.

Ftot =

{
Fatt +∑k

kFrep i f
(

kdo ≤ dg&kdo ≤ dd
)

Fatt elsei f
(

kdo > dg
)
(9)

3.2.1 New Repulsive Force for Solving Dead-
lock Issue

With the additional repulsive force component,
the total behavior of the robot is changed. In the
situation as explained in Figure 5, it is clear that
the effect of the new force component makes a ro-
tational force around the obstacle but not a radial
force like in the traditional method.

Figure 5(a) shows the variation of the new re-
pulsive force and the total repulsive force for dif-
ferent heading angles of the robot. When the head-
ing direction goes away from the line connects the
goal-obstacle-robot, the effect of the new repulsive
force component becomes low. Similarly, for dif-
ferent sight angles to the obstacle, total repulsive
force shows rotational characteristics as shown in
Figure 5(b). As a result, new repulsive force com-
ponent helps the robot to escape from the deadlock
position with a smooth rotation around the obstacle.

Symmetrical distribution of the obstacles
around the robot-goal line is shown in Figure 6
with force components for two different positions
of the robot. As the robot moves towards the goal,
the effect of the new repulsive force increases posi-
tively and keep on increasing its amplitude and be-
ing closer to the attractive force. This will help
robot to reach the goal without deadlocking. But
in contrast, T-APF based approach may fail when
the robot passes through between the obstacles.

This characteristic of the new repulsive 
force always assists the robot to escape from 
the deadlock positions (local minima) in the 
motion. New repulsive force _

k
rep newF by the kth 

obstacle is defined as in Eq. (5) and k
repF as 

same as in Eq. (3). The new repulsive force 
consists of obstacle-velocity information  K  , 
robot turning direction towards the goal by FVe  
and the information of the basic obstacle 
distance. The unit vector FVe defined as in Eq. 
(6) represents the relationship between the 
attractive force and the robot’s velocity. This 
will determine the direction for _

k
rep newF to 

appear either left or right side of the robot.  

   K   k k
rep_new FV repF e F           (5) 

sinr 
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F V          (6) 
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The magnitude of the new repulsive force 
varies not only with the distance to the 
obstacles, but also with the angle δ. The 
governing mathematical equation of the 
obstacle-velocity information  K   can be 
expressed as in Eq. (7). The variation of  K   
with the angle δ is shown in Figure 4. The 
maximum value of the angle δ can be pre-
defined according to our definition of the 
information range. As the value of  is zero, 
the value of the function  K  has its 
maximum value. When δ increases, in other 
words, as the robot is heading away from the 
obstacles, the value of the  K  decreases 
exponentially and it reaches zero when δ=δmax 
which is a pre-defined value (=120º in this 
experiment). The characteristics of the function 
 K  depend on the parameter values of kmax, τ 

and δ. Those values should be properly defined 
in order to get the proper functionality of  K  . 

The P-APF algorithm also has the integrated 
capability to guide the robot properly towards 
the goal when there is an obstacle closer to it. 
As shown in the Eq. (8), when the robot-goal 
distance 𝑑𝑑𝑔𝑔 is less than the robot-obstacle 
distance 𝑑𝑑𝑜𝑜 within the obstacle detecting 
range 𝑑𝑑𝑑𝑑, robot considers only the attractive 
force for its motion.   

 
Figure 4: Variation of  K   with the angle δ. 
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3.2.1 New Repulsive Force for 
Solving Deadlock Issue 

With the additional repulsive force 
component, the total behavior of the robot is 
changed. In the situation as explained in Figure 
5, it is clear that the effect of the new force 
component makes a rotational force around the 
obstacle but not a radial force like in the 
traditional method.  

Figure 5(a) shows the variation of the new 
repulsive force and the total repulsive force for 
different heading angles of the robot. When the 
heading direction goes away from the line 
connects the goal-obstacle-robot, the effect of 
the new repulsive force component becomes 
low. Similarly, for different sight angles to the 
obstacle, total repulsive force shows rotational 
characteristics as shown in Figure 5(b). As a 
result, new repulsive force component helps 
the robot to escape from the deadlock position 
with a smooth rotation around the obstacle.  

Symmetrical distribution of the obstacles 
around the robot-goal line is shown in Figure 6 
with force components for two different 
positions of the robot. As the robot moves 
towards the goal, the effect of the new 
repulsive force increases positively and keep 
on increasing its amplitude and being closer to 
the attractive force. This will help robot to 
reach the goal without deadlocking. But in 
contrast, T-APF based approach may fail when 
the robot passes through between the obstacles.  
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Figure 5. Rotating potential field (a) Collinear
with different heading angles, (b) With different

sight angles.

Figure 6. Symmetrical distribution of the obstacles
around the robot-goal line.

4 Simulation Experiments

The proposed P-APF based algorithm was
mathematically modeled in the MATLAB simula-
tion environment. In order to realize the behavior
of the proposed method, simulations were studied
in both the static and dynamic environments under
different conditions. For a better comparison of the
performance of the proposed method with that of
the traditional method, same parameter values of
ag, ao, bg and bo for APF models were used. The
parameters used in the attractive force and the re-
pulsive force ag and ao as in Eq. (1) and Eq. (3)
were chosen as 5 and 8 respectively for each simu-
lation study. The parameter bg and bo were selected
to be equal to 0.4, in order to maintain a similar dis-

tribution for attractive and repulsive potential fields
which vanished over 4m distance. The robot was
considered as an omni-directional point-robot and
the speed of it was chosen to be 0.05 m/sec. In
dynamic environment, obstacles are rotating on the
circles (radius = 4 m) at the speed of 0.07 m/sec in
clockwise and counter clockwise and 0.05 m/sec if
it has a linear motion. For the simulation, it was
assumed that there is a virtual LRF mounted on the
robot with maximum detectable range of 4m and
the scanning range of 240.

4.1 Simulation with T-APF Algorithm

For easy and clear explanation, at first, in both
the environments the deadlock problem was stud-
ied with a single obstacle which is collinear with
the goal and the robot as shown in Figure 7(a). This
shows the dead-lock occurrence when an obstacle
is in between the goal and the robot. For this sim-
ulation study, initially robot started to move from
the point (5, 1), the goal is located at (5, 14) and
there is an obstacle at (5, 8) on the line connects the
robot and the goal. The algorithm determines the
way-points of the robot’s path at each step. Simu-
lation shows that the robot is trapped around (5, 7)
closer to the obstacle. This happens when the total
potential force become zero; hence no command is
generated to move the robot towards the goal which
is called deadlock. Figure 7(b) explains the total po-
tential force variation with the travelling distance of
the robot in the Y-direction. It shows that the total
potential force has converged to zero near a distance
of 7m in Y-direction.

Simulation study done for a single dynamic ob-
stacle moving towards the robot is shown in Figure
8. Initially, robot starts to move towards the goal.
As the obstacle reaches the robot, it starts to move
back away from the goal with oscillations. In this
unexpected motion, robot has first come to a local
minimum position and since the obstacle is further
moving towards the robot, the total potential force
appeares and it forces the robot to move backward.
As shown in Figure 8(b), total potential force be-
come zero for a moment and as the obstacle come
closer to the robot total potential force shows an os-
cillation near zero. This variation of total poten-
tial force towards the negative direction results the
backward motion of the robot in Y-direction away
from the goal. Therefore the robot never reached
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4 Simulation Experiments 
The proposed P-APF based algorithm was 

mathematically modeled in the MATLAB 
simulation environment. In order to realize the 
behavior of the proposed method, simulations 
were studied in both the static and dynamic 
environments under different conditions. For a 
better comparison of the performance of the 
proposed method with that of the traditional 
method, same parameter values of 𝑎𝑎𝑔𝑔, 𝑎𝑎𝑜𝑜, 𝑏𝑏𝑔𝑔 
and 𝑏𝑏𝑜𝑜 for APF models were used. The 
parameters used in the attractive force and the 
repulsive force 𝑎𝑎𝑔𝑔 and 𝑎𝑎𝑜𝑜 as in Eq. (1) and Eq. 
(3) were chosen as 5 and 8 respectively for 
each simulation study. The parameter 𝑏𝑏𝑔𝑔 and 
𝑏𝑏𝑜𝑜 were selected to be equal to 0.4, in order to 
maintain a similar distribution for attractive 
and repulsive potential fields which vanished 
over 4m distance. The robot was considered as 
an omni-directional point-robot and the speed 
of it was chosen to be 0.05 m/sec. In dynamic 
environment, obstacles are rotating on the 
circles (radius = 4 m) at the speed of 0.07 
m/sec in clockwise and counter clockwise and 
0.05 m/sec if it has a linear motion. For the 
simulation, it was assumed that there is a 
virtual LRF mounted on the robot with 

maximum detectable range of 4m and the 
scanning range of 240º. 

4.1 Simulation with T-APF 
Algorithm 

For easy and clear explanation, at first, in 
both the environments the deadlock problem 
was studied with a single obstacle which is 
collinear with the goal and the robot as shown 
in Figure 7(a). This shows the dead-lock 
occurrence when an obstacle is in between the 
goal and the robot. For this simulation study, 
initially robot started to move from the point 
(5, 1), the goal is located at (5, 14) and there is 
an obstacle at (5, 8) on the line connects the 
robot and the goal. The algorithm determines 
the way-points of the robot’s path at each step. 
Simulation shows that the robot is trapped 
around (5, 7) closer to the obstacle. This 
happens when the total potential force become 
zero; hence no command is generated to move 
the robot towards the goal which is called 
deadlock. Figure 7(b) explains the total 
potential force variation with the travelling 
distance of the robot in the Y-direction. It 
shows that the total potential force has 
converged to zero near a distance of 7m in Y-
direction.  

Simulation study done for a single dynamic 
obstacle moving towards the robot is shown in 
Figure 8. Initially, robot starts to move towards 
the goal. As the obstacle reaches the robot, it 
starts to move back away from the goal with 
oscillations. In this unexpected motion, robot 
has first come to a local minimum position and 
since the obstacle is further moving towards 
the robot, the total potential force appeares and 
it forces the robot to move backward. As 
shown in Figure 8(b), total potential force 
become zero for a moment and as the obstacle 
come closer to the robot total potential force 
shows an oscillation near zero. This variation 
of total potential force towards the negative 
direction results the backward motion of the 
robot in Y-direction away from the goal. 
Therefore the robot never reached its goal 
position until the path of the obstacle is 
changed.  

Another possible situation where the 
deadlock can happen is explained in Figure 9, 
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4 Simulation Experiments 
The proposed P-APF based algorithm was 

mathematically modeled in the MATLAB 
simulation environment. In order to realize the 
behavior of the proposed method, simulations 
were studied in both the static and dynamic 
environments under different conditions. For a 
better comparison of the performance of the 
proposed method with that of the traditional 
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and 𝑏𝑏𝑜𝑜 for APF models were used. The 
parameters used in the attractive force and the 
repulsive force 𝑎𝑎𝑔𝑔 and 𝑎𝑎𝑜𝑜 as in Eq. (1) and Eq. 
(3) were chosen as 5 and 8 respectively for 
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𝑏𝑏𝑜𝑜 were selected to be equal to 0.4, in order to 
maintain a similar distribution for attractive 
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over 4m distance. The robot was considered as 
an omni-directional point-robot and the speed 
of it was chosen to be 0.05 m/sec. In dynamic 
environment, obstacles are rotating on the 
circles (radius = 4 m) at the speed of 0.07 
m/sec in clockwise and counter clockwise and 
0.05 m/sec if it has a linear motion. For the 
simulation, it was assumed that there is a 
virtual LRF mounted on the robot with 

maximum detectable range of 4m and the 
scanning range of 240º. 

4.1 Simulation with T-APF 
Algorithm 

For easy and clear explanation, at first, in 
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was studied with a single obstacle which is 
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initially robot started to move from the point 
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shows an oscillation near zero. This variation 
of total potential force towards the negative 
direction results the backward motion of the 
robot in Y-direction away from the goal. 
Therefore the robot never reached its goal 
position until the path of the obstacle is 
changed.  

Another possible situation where the 
deadlock can happen is explained in Figure 9, 
which describes the symmetrical distribution 
of the obstacle around the robot-goal line. This 
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Figure 5. Rotating potential field (a) Collinear
with different heading angles, (b) With different

sight angles.

Figure 6. Symmetrical distribution of the obstacles
around the robot-goal line.

4 Simulation Experiments

The proposed P-APF based algorithm was
mathematically modeled in the MATLAB simula-
tion environment. In order to realize the behavior
of the proposed method, simulations were studied
in both the static and dynamic environments under
different conditions. For a better comparison of the
performance of the proposed method with that of
the traditional method, same parameter values of
ag, ao, bg and bo for APF models were used. The
parameters used in the attractive force and the re-
pulsive force ag and ao as in Eq. (1) and Eq. (3)
were chosen as 5 and 8 respectively for each simu-
lation study. The parameter bg and bo were selected
to be equal to 0.4, in order to maintain a similar dis-

tribution for attractive and repulsive potential fields
which vanished over 4m distance. The robot was
considered as an omni-directional point-robot and
the speed of it was chosen to be 0.05 m/sec. In
dynamic environment, obstacles are rotating on the
circles (radius = 4 m) at the speed of 0.07 m/sec in
clockwise and counter clockwise and 0.05 m/sec if
it has a linear motion. For the simulation, it was
assumed that there is a virtual LRF mounted on the
robot with maximum detectable range of 4m and
the scanning range of 240.

4.1 Simulation with T-APF Algorithm

For easy and clear explanation, at first, in both
the environments the deadlock problem was stud-
ied with a single obstacle which is collinear with
the goal and the robot as shown in Figure 7(a). This
shows the dead-lock occurrence when an obstacle
is in between the goal and the robot. For this sim-
ulation study, initially robot started to move from
the point (5, 1), the goal is located at (5, 14) and
there is an obstacle at (5, 8) on the line connects the
robot and the goal. The algorithm determines the
way-points of the robot’s path at each step. Simu-
lation shows that the robot is trapped around (5, 7)
closer to the obstacle. This happens when the total
potential force become zero; hence no command is
generated to move the robot towards the goal which
is called deadlock. Figure 7(b) explains the total po-
tential force variation with the travelling distance of
the robot in the Y-direction. It shows that the total
potential force has converged to zero near a distance
of 7m in Y-direction.

Simulation study done for a single dynamic ob-
stacle moving towards the robot is shown in Figure
8. Initially, robot starts to move towards the goal.
As the obstacle reaches the robot, it starts to move
back away from the goal with oscillations. In this
unexpected motion, robot has first come to a local
minimum position and since the obstacle is further
moving towards the robot, the total potential force
appeares and it forces the robot to move backward.
As shown in Figure 8(b), total potential force be-
come zero for a moment and as the obstacle come
closer to the robot total potential force shows an os-
cillation near zero. This variation of total poten-
tial force towards the negative direction results the
backward motion of the robot in Y-direction away
from the goal. Therefore the robot never reached
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its goal position until the path of the obstacle is
changed.

Another possible situation where the deadlock
can happen is explained in Figure 9, which de-
scribes the symmetrical distribution of the obstacle
around the robot-goal line. This takes place when
the total potential force becomes zero before robot
passes the obstacles. Robot has stopped around (5,
7) because the total force has reached zero as shown
in Figure 9(b).

Figure 7. Deadlock issue of T-APF method for a
static obstacle: (a) Simulation snapshot, (b) Ftot

variation with distance Y.

Figure 8. GNR problem of T-APF method with a
moving obstacle: (a) Snapshot of the simulation,

(b) Ftot variation.

Figure 9. Deadlock issue of T-APF with
symmetrical static obstacle distribution (a)
Simulation snapshot, (b) Ftot variation with

distance Y.

4.2 Simulation with P-APF Algorithm

To deal with such kind of motion in dynamic
environments and dead-lock problem in static en-
vironments, the P-APF algorithm gives a better so-
lution. In order to verify the effect of the P-APF,
simulation was first done in a static environment
with a single obstacle and the simulation result is
shown in Figure 10. The motion of the robot as
in Figure 10(a) shows how it avoids the obstacle
without deadlocking. Indeed with the P-APF based
path planning algorithm, there is no local minimum
where the total potential force becomes zero ex-
cept at the goal point which causes deadlock prob-
lem. Around the point at the distance of 6m in Y-
direction, as in Figure 10(b), total force has reached
its minimum value near but behind the obstacle be-
fore starting to increase as the robot moves further
towards the obstacle. At this point, the secondary
repulsive force component is acting perpendicular
to the original repulsive force; hence the direction
of the total potential force changes and robot starts
to turn.

Figure 11 shows the simulation result carried
out for a single dynamic obstacle using P-APF
method. Initially, the obstacle is placed at (5, 8)
in between the robot and the goal and its velocity
towards the robot is (0, -0.05) m/sec. Robot starts
to move towards the goal while the obstacle moves
towards the robot. When the robot detects the ob-
stacle, new repulsive force component helps it to go
away from the direction of the obstacle and robot
passes the obstacle safely and reaches the goal. As
shown in the Figure 11(b), total potential force of
the P-APF does not come to zero unless at the goal
point.

To overcome the deadlock problem with sym-
metrical obstacle distribution, simulation was car-
ried out and results are shown in Figure 12. It
clearly shows the comparative advantage of P-APF
over the traditional method. As the robot moves
closer to the obstacles, total potential force starts
to decrease but before reaching zero starts to in-
crease because of the new repulsive force compo-
nent. This happens in any condition because the
new force component is acting to create a rotational
force towards the goal direction only, and increas-
ing until robot passes the obstacle (see Figure 5 (b)).

becomes zero before robot passes the 
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because the total force has reached zero as 
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Figure 10. Simulation result of P-APF with a
static obstacle.

Figure 11. Simulation result of P-APF with a
moving obstacle

Figure 12. Simulation result of P-APF with
symmetrical static obstacle distribution

4.3 Simulation with Multi-Obstacles for P-
APF and T-APF

Furthermore, for better realization of the path
planning algorithm in static and dynamic multi-
obstacle environments, both the T-APF and P-APF
algorithms were studied by performing the simu-
lations. In both the environments, robot starts to
move from the point (5, 1) to its goal point at (5,
14) for all the simulations. Figure 13(a) shows the
navigation of the robot using P-APF in a static envi-
ronment with many obstacles. The variation of the
total potential force with respect to the distance in
Y-direction is explained in Figure 13(b). Total po-
tential force variation shows that its value becomes
zero at the goal point.

Simulation study was performed for both the T-
APF and P-APF in multi-obstacle dynamic environ-
ments. This study was done to verify the capability
of usage of the proposed method in dynamic situa-
tion too. Figure 14 explains the simulation results
for T-APF algorithm and Figure 15 explains the
simulation for P-APF algorithm. Additionally, this
study verifies that both the proposed and T-APFs
have the capability of reaching the goal since no
situation where the deadlock can happenes. How-
ever, the evaluation parameters defined to compare
and evaluate the performances of the P-APF shows
good performance over the traditional method (see
Section 4.4).

Figure 13. Simulation of P-APF method in a static
environment with few obstacles.

Figure 14. Simulation of T-APF method in a
dynamic environment.

Figure 15. Simulation of P-APF method in a
dynamic environment.
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Figure 10. Simulation result of P-APF with a
static obstacle.

Figure 11. Simulation result of P-APF with a
moving obstacle

Figure 12. Simulation result of P-APF with
symmetrical static obstacle distribution

4.3 Simulation with Multi-Obstacles for P-
APF and T-APF

Furthermore, for better realization of the path
planning algorithm in static and dynamic multi-
obstacle environments, both the T-APF and P-APF
algorithms were studied by performing the simu-
lations. In both the environments, robot starts to
move from the point (5, 1) to its goal point at (5,
14) for all the simulations. Figure 13(a) shows the
navigation of the robot using P-APF in a static envi-
ronment with many obstacles. The variation of the
total potential force with respect to the distance in
Y-direction is explained in Figure 13(b). Total po-
tential force variation shows that its value becomes
zero at the goal point.

Simulation study was performed for both the T-
APF and P-APF in multi-obstacle dynamic environ-
ments. This study was done to verify the capability
of usage of the proposed method in dynamic situa-
tion too. Figure 14 explains the simulation results
for T-APF algorithm and Figure 15 explains the
simulation for P-APF algorithm. Additionally, this
study verifies that both the proposed and T-APFs
have the capability of reaching the goal since no
situation where the deadlock can happenes. How-
ever, the evaluation parameters defined to compare
and evaluate the performances of the P-APF shows
good performance over the traditional method (see
Section 4.4).

Figure 13. Simulation of P-APF method in a static
environment with few obstacles.

Figure 14. Simulation of T-APF method in a
dynamic environment.

Figure 15. Simulation of P-APF method in a
dynamic environment.

AN ARTIFICIAL POTENTIAL FIELD BASED MOBILE ROBOT . . .

4.4 Results and Discussion

Simulation was carried out in different environ-
mental settings to evaluate the performance of the
proposed (P-APF) path planning algorithm. Evalu-
ation was done by comparing three parameters:

1 Edg: Goal reachability distance error

2 Dmin: Minimum clearance distance to obstacle

3 Dtrav: Total traveling distance

The Table 2 shows the result of the simula-
tion for both the T-APF and P-APF in a static en-
vironment. Simulations were carried out for sin-
gle obstacle environment in a situation where the
robot-obstacle-goal is aligned and for the two obsta-
cles symmetrically distributed around the line con-
nects the goal and the robot. But in multi-obstacles
case their positions were chosen randomly. It is
shown that, in single obstacle case, the robot has
not reached the goal (Edg = 9.05) with T-APF while
it was able to reach the goal with P-APF. Further,
navigation using P-APF has kept a considerably a
large robot-to-obstacle clearance (Dmin) in both the
environments. And, it has shown that the P-APF
minimizes the travelling distance too in both the
static and dynamic environments. With two obsta-
cles distributed symmetrically around the robot goal
axis was also considered and evaluation parameters
show that the robot has not reached the goal for
T-APF. But in contrast, P-APF has prevented the
deadlock and guides robot towards goal.

A comparative analysis for the evaluation pa-
rameters of the simulation for dynamic environment
is given in Table 3. In both the environments, in
addition to solve the deadlock issue, P-APF has
maintained a considerably more Dmin than in T-APF
and minimum Dtrav all the time. By comparing the
performance of both the APF approaches, P-APF
shows the best performance over the traditional ap-
proach in static environments as well as in the dy-
namic environments.

5 Numerical Analysis of the Pro-
posed Approach

The proposed path planning algorithm (P-APF
algorithm) does not consist of local minimum

which causes deadlock problem for the mobile
robot path planning. Simply, local minimum
point exists when collinear alignment of the robot-
obstacle-goal or a symmetrical distribution of the
obstacles around the line which connects the robot
and the goal. In those situations there is a proba-
bility to happen deadlock as the total potential be-
comes zero.

The T-APF and P-APF algorithms are consid-
ered to describe the deadlock scenario and the so-
lution given by the P-APF is analyzed numerically.
This analysis was done for the most critical situa-
tion of symmetrical distribution of obstacle around
the robot-goal axis as shown in Figure 16. In this
study, two parameters which do effect directly on
deadlocking, bg and bo as in Eq. (1) and Eq. (3) and
the distance between the two symmetrically dis-
tributed obstacles (obstacle gap) were considered as
the variable parameters. Initially robot was placed
at (0, 0) while the goal was at (0, 10). Obstacles
were placed at (5, 0) and (-5, 5). By changing the
gap of the obstacles symmetrically about the robot-
goal line along the Y-axis, the gap was maintained
in the range of [0.2, 10]. Variation of the total re-
pulsive force (FTot) for both the T-APF and P-APF
are shown in Figure 17. It clearly shows that the
FTot never goes to zero except the goal point for
P-APF unlike for T-APF. In some situations where
the obstacles are very closely separated, FTot of T-
APF goes to negative which implies the occurrence
of deadlock.

Figure 16. Simulation environment for the
numerical study

The second fact of parameters bg and bo of the
potential functions in Eq. (1) and Eq. (3) defines

=9.05) with T-APF while it was able to reach 
the goal with P-APF. Further, navigation using 
P-APF has kept a considerably a large robot-
to-obstacle clearance (Dmin) in both the 
environments.  And, it has shown that the P-
APF minimizes the travelling distance too in 
both the static and dynamic environments. 
With two obstacles distributed symmetrically 
around the robot goal axis was also considered 
and evaluation parameters show that the robot 
has not reached the goal for T-APF. But in 
contrast, P-APF has prevented the deadlock 
and guides robot towards goal.  

A comparative analysis for the evaluation 
parameters of the simulation for dynamic 
environment is given in Table 3. In both the 
environments, in addition to solve the deadlock 
issue, P-APF has maintained a considerably 
more Dmin than in T-APF and minimum Dtrav 
all the time. By comparing the performance of 
both the APF approaches, P-APF shows the 
best performance over the traditional approach 
in static environments as well as in the 
dynamic environments. 

Table 2: Results of the simulations in static 
environment. 

 Single Obstacle Multi Obstacles 

Edg Dmin Dtrav Edg Dmin Dtrav 
T-APF 9.05 1.05 N/A ~ 0 1.37 15.40 
P-APF ~ 0 1.28 17.78 ~ 0 1.41 15.35 

 Two Obstacles 

Edg Dmin Dtrav 
T-APF 9.00 1.41 N/A 
P-APF ~ 0 1.00 17.00 

Table 3: Results of the simulations in dynamic 
environment. 

 Single Obstacle Multi Obstacles 

Edg Dmin Dtrav Edg Dmin Dtrav 
T-APF ~ ∞ 0.90 ~ ∞ ~ 0 0.91 17.10 

P-APF ~ 0 1.00 17.75 ~ 0 0.93 17.47 

5 Numerical Analysis of the 
Proposed Approach 

The proposed path planning algorithm (P-
APF algorithm) does not consist of local 
minimum which causes deadlock problem for 
the mobile robot path planning. Simply, local 
minimum point exists when collinear 
alignment of the robot-obstacle-goal or a 

symmetrical distribution of the obstacles 
around the line which connects the robot and 
the goal. In those situations there is a 
probability to happen deadlock as the total 
potential becomes zero. 

The T-APF and P-APF algorithms are 
considered to describe the deadlock scenario 
and the solution given by the P-APF is 
analyzed numerically. This analysis was done 
for the most critical situation of symmetrical 
distribution of obstacle around the robot-goal 
axis as shown in Figure 16. In this study, two 
parameters which do effect directly on 
deadlocking, 𝑏𝑏𝑔𝑔 and 𝑏𝑏𝑜𝑜 as in Eq. (1) and Eq. 
(3) and the distance between the two 
symmetrically distributed obstacles (obstacle 
gap) were considered as the variable 
parameters. Initially robot was placed at (0, 0) 
while the goal was at (0, 10). Obstacles were 
placed at (5, 0) and (-5, 5). By changing the 
gap of the obstacles symmetrically about the 
robot-goal line along the Y-axis, the gap was 
maintained in the range of [0.2, 10]. Variation 
of the total repulsive force (𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻) for both the 
T-APF and P-APF are shown in Figure 17. It 
clearly shows that the 𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻 never goes to zero 
except the goal point for P-APF unlike for T-
APF. In some situations where the obstacles 
are very closely separated, 𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻 of T-APF goes 
to negative which implies the occurrence of 
deadlock.  
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Figure 16: Simulation environment for the 
numerical study. 

The second fact of parameters 𝑏𝑏𝑔𝑔 and 𝑏𝑏𝑜𝑜 of 
the potential functions in Eq. (1) and Eq. (3) 
defines the potential distribution. Value of 𝑏𝑏𝑔𝑔 
and 𝑏𝑏𝑜𝑜 were changed equally from 0.1 to 1 and 
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Table 2. Results of the simulations in static environment

Single Obstacle Multi Obstacles
Edg Dmin Dtrav Edg Dmin Dtrav

T-APF 9.05 1.05 N/A ˜ 0 1.37 15.40
P-APF ˜ 0 1.28 17.78 ˜ 0 1.41 15.35

Two Obstacles
Edg Dmin Dtrav

T-APF 9.00 1.41 N/A
P-APF ˜ 0 1.00 17.00

Table 3. Results of the simulations in dynamic environment

Single Obstacle Multi Obstacles
Edg Dmin Dtrav Edg Dmin Dtrav

T-APF ˜ ∞ 0.90 ˜ ∞ ˜ 0 0.91 17.10
P-APF ˜ 0 1.00 17.75 ˜ 0 0.93 17.47

the potential distribution. Value of bg and bo were
changed equally from 0.1 to 1 and variation FTot

for both methods is shown in Figure 18. For this
study the obstacles were placed at the positions of
(1, 5) and (-1, 5). It shows that for some values
of bg and bo, total potential force FTot has reached
zero (blue lines) where the deadlock happenes with
T-APF. But, in contrast P-APF shows (red lines) no
such behavior for any situation.

Figure 17. Variation of FTot for different obstacle
gap values

Figure 18. Variation of FTot for different bg (=bo)
values

In an unstructured environment, P-APF can be
used without any difficulty considering the geomet-
rical parameters of the environment such as the gap
between the obstacles, width of the corrido, etc. At-
tention is only given to the size of the robot, stan-
dard deviation of the expected potential distribution
(included into the bg and bo) and the safety distance.
Overall analysis depicts that the performance of P-
APF is better than that of T-APF.

6 Conclusion

An intelligent APF based path planning algo-
rithm (P-APF) for mobile robot has been presented
in this paper. It has the capability of escaping the lo-

Figure 18. For this study the obstacles were 
placed at the positions of (1, 5) and (-1, 5). It 
shows that for some values of 𝑏𝑏𝑔𝑔 and 𝑏𝑏𝑜𝑜 , total 
potential force 𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻 has reached zero (blue 
lines) where the deadlock happenes with T-
APF. But, in contrast P-APF shows (red lines) 
no such behavior for any situation.  

 
Figure 17: Variation of 𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻 for different 
obstacle gap values. 

Figure 18: Variation of 𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻 for different 𝑏𝑏𝑔𝑔 
(=𝑏𝑏𝑜𝑜) values. 

In an unstructured environment, P-APF can 
be used without any difficulty considering the 
geometrical parameters of the environment 
such as the gap between the obstacles, width of 
the corrido, etc. Attention is only given to the 
size of the robot, standard deviation of the 
expected potential distribution (included into 
the 𝑏𝑏𝑔𝑔 and 𝑏𝑏𝑜𝑜 ) and the safety distance. Overall 
analysis depicts that the performance of P-APF 
is better than that of T-APF. 

6 Conclusion 
An intelligent APF based path planning 

algorithm (P-APF) for mobile robot has been 
presented in this paper. It has the capability of 
escaping the local minima positions where 
deadlock happens. This study shows an 

efficient path planning algorithm relying only 
on local obstacle information, detected by LRF 
placed on the robot.  

Comparisons have been carried out through 
the simulations, between this P-APF method 
and the T-APF method. The P-APF algorithm 
has proved a significant improvement on the 
T-APF by solving the deadlock problem well. 
It also produces considerable reduction of the 
travelling distance, maximizing the robot-
obstacle clearance gap in comparison to the 
traditional approach. Moreover, the proposed 
approach provides an easy parameter 
calculation for the potential field distributions. 
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Table 2. Results of the simulations in static environment

Single Obstacle Multi Obstacles
Edg Dmin Dtrav Edg Dmin Dtrav

T-APF 9.05 1.05 N/A ˜ 0 1.37 15.40
P-APF ˜ 0 1.28 17.78 ˜ 0 1.41 15.35

Two Obstacles
Edg Dmin Dtrav

T-APF 9.00 1.41 N/A
P-APF ˜ 0 1.00 17.00

Table 3. Results of the simulations in dynamic environment

Single Obstacle Multi Obstacles
Edg Dmin Dtrav Edg Dmin Dtrav

T-APF ˜ ∞ 0.90 ˜ ∞ ˜ 0 0.91 17.10
P-APF ˜ 0 1.00 17.75 ˜ 0 0.93 17.47

the potential distribution. Value of bg and bo were
changed equally from 0.1 to 1 and variation FTot

for both methods is shown in Figure 18. For this
study the obstacles were placed at the positions of
(1, 5) and (-1, 5). It shows that for some values
of bg and bo, total potential force FTot has reached
zero (blue lines) where the deadlock happenes with
T-APF. But, in contrast P-APF shows (red lines) no
such behavior for any situation.

Figure 17. Variation of FTot for different obstacle
gap values

Figure 18. Variation of FTot for different bg (=bo)
values

In an unstructured environment, P-APF can be
used without any difficulty considering the geomet-
rical parameters of the environment such as the gap
between the obstacles, width of the corrido, etc. At-
tention is only given to the size of the robot, stan-
dard deviation of the expected potential distribution
(included into the bg and bo) and the safety distance.
Overall analysis depicts that the performance of P-
APF is better than that of T-APF.

6 Conclusion

An intelligent APF based path planning algo-
rithm (P-APF) for mobile robot has been presented
in this paper. It has the capability of escaping the lo-
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cal minima positions where deadlock happens. This
study shows an efficient path planning algorithm re-
lying only on local obstacle information, detected
by LRF placed on the robot.

Comparisons have been carried out through the
simulations, between this P-APF method and the T-
APF method. The P-APF algorithm has proved a
significant improvement on the T-APF by solving
the deadlock problem well. It also produces con-
siderable reduction of the travelling distance, maxi-
mizing the robot-obstacle clearance gap in compar-
ison to the traditional approach. Moreover, the pro-
posed approach provides an easy parameter calcu-
lation for the potential field distributions.
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