PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of flow acoustic effects on a commercial automotive exhaust system - methods and materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Literature review on flow acoustic methods and materials of an automotive muffler. A car is judged comfortable also depending on the acoustic level transmitted inside, and a thorough knowledge of acoustics of ducts and mufflers is needed for the design of efficient muffler configurations. Unstable exhaust gas at high temperature flowing from internal combustion engine manifold may cause of noise and vibrations conflicting with the high standard of acoustic comfort requested by this kind of vehicle. The basic gaols are to define most important methods to identify noise occur from the motion of fluid in case of turbulent model. Materials properties like velocity, temperature, thermal conductivity and density have been technical presented in this work.
Rocznik
Strony
149--156
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Informatics, University of Miskolc, 3515 Miskolc, Hungary
Bibliografia
  • 1. Prakash Chandra Mishra, Sourav Kumar Kar, Harshit Mishra, and Anand Gupta. (2016). Modeling for combined effect of muffler geometry modification and blended fuel use on exhaust performance of a four-stroke engine: A computational fluid dynamics approach. Applied Thermal Engineering (108)1105–1118.
  • 2. K. Ashok Reddy. (2018). A Critical Review on Acoustic Methods & Materials of a Muffler. Materials Today: Proceedings (4)7313–7334, 2017.
  • 3. Prakash Chandra Mishra, Sourav Kumar Kar, and Harshit Mishra. Effect of perforation on exhaust performance of a turbo pipe type muffler using methanol and gasoline blended fuel: A step to NOx control. Journal of Cleaner Production (183)869-879.
  • 4. M.L. Munjal, B.K. Behera, P.T. Thawani. (1998). Transfer Matrix Model for the Reverse-flow, three-duct, Open End Perforated Element Muffler. Applied Acoustics, 54(3)229-238.
  • 5. M.L. Munjal. (1997). Plane wave analysis of side inlet/outlet chamber mufflers with mean flow. Applied Acoustics, 52(2), 165-175.
  • 6. S. Allam, H. Bodén, and M. Åbom. (2006). Over determination in acoustic two-port data Measurement. The thirteenth International congress on sound and vibration, Vienna-Austria.
  • 7. A.I. El-Sharkawy and N.M. El-Chazly. (1987). A critical survey of basic theories used in muffler design and analysis. Applied Acoustics, 20(3), 195-218.
  • 8. Y. Sathyanarayana, M.L. Munjal. (2000). A hybrid approach for aeroacoustic analysis of the engine exhaust system, Applied Acoustics, 60(4), 425-450.
  • 9. L. Desmons, J. Kergomard. (1994). Simple analysis of exhaust noise produced by a four cylinder engine. Applied Acoustics, 41(2), 127-155.
  • 10. F.J. Heymann. (1971). Acoustic performance tests and parameters for fluid piping system components: A critical evaluation of the state of the art: Part 1. Applied Acoustics, 4(2), 79-101.
  • 11. F.J. Heymann. (1971). Acoustic performance tests and parameters for fluid piping system components: A critical evaluation of the state of the art: Part 2. Applied Acoustics, 49(3), 155-173.
  • 12. H. Bailliet, R. Boucheron, J.-P. Dalmont, Ph. Herzog, S. Moreau and J.-C. Valière. (2012). Setting up an experimental apparatus for the study of multimodal acoustic propagation with turbulent mean flow. Applied Acoustics, 73(3), 191-197.
  • 13. Henri Fenech, I. Ganz. (1986). Acoustic excitation of a square plate by turbulent flow noise. Applied Acoustics, 19(3), 167-182.
  • 14. S. Bilawchuk, K.R. Fyfe. (2003). Comparison and implementation of the various numerical methods used for calculating transmission loss in silencer systems. Applied Acoustics, 64(9), 903-916.
  • 15. F. Payri, A.J. Torregrosa, and R. Payri. (2000). Evaluation through pressure and mass velocity distributions of the linear acoustical description of I. C. engine exhaust systems. Applied Acoustics, 60(4), 489-504.
  • 16. D.A. Bies, C.H. Hansen. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(3), 357-391.
  • 17. Yasser Elnemr. (2007). Investigation of the acoustic Performance of dissipative mufflers: Influence of different absorbing materials and packing densities. Virtual Vehicle Conference, Graz-Austria.
  • 18. B. Mohamad, G. Szepesi & B. Bolló. (2017). Combustion Optimization in Spark Ignition Engines. Multi-Science - XXXI. microCAD Scientific Conference. University of Miskolc-Hungary.
  • 19. B. Mohamad, G. Szepesi & B. Bolló. (2018). Review Article: Effect of Ethanol-Gasoline Fuel Blends on the Exhaust Emissions and Characteristics of SI Engines. Lecture Notes in Mechanical Engineering. 29-41.
  • 20. B. Mohamad, G. Szepesi & B. Bolló. (2017). Review Article: Modelling and Analysis of a Gasoline Engine Exhaust Gas Systems. International Scientific Conference on Advances in Mechanical Engineering. University of Debrecen-Hungary.
  • 21. D. A. Bies & C. H. Hansen. (1980). Flow Resistance Information for Acoustical Design. Applied Acoustics 13, 357-391.
  • 22. B. C. Nakra, W, K. Sa'id, & A. Nassir. (1981). Investigations on Mufflers for Internal Combustion Engines. Applied Acoustics 14, 135 145.
  • 23. J S Lamancusa. (1988). The Transmission Loss of Double Expansion Chamber Mufflers with Unequal Size Chambers. Applied Acoustics 24, 15-32.
  • 24. Carl Q. Howard & Richard A. Craig. (2014). Noise reduction using a quarter wave tube with different orifice geometries. Applied Acoustics 76, 180–186.
  • 25. N. K. Singh & P. A. Rubini. (2015). Large Eddy Simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers. Applied Acoustics, 98, pp. 6-19.
  • 26. M. L. Munjal. (2004). Acoustic Characterization of an Engine Exhaust Source – A Review. Proceedings of Acoustics.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-987447dc-44cc-4d4d-bb32-7f593fdaaf3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.