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PREDICTIVE SCHEDULING BASED ON KNOWLEDGE ACQUIRED  
FROM FREQUENCY OF MACHINE WORK DISTURBANCES   

During execution of a schedule some uncertain events may take place for example: resources may become 
unavailable, machine can be broken. Uncertainty should be included in the process of job scheduling. In the 
paper the problem to generate a workable, proactive baseline schedule under production constraints and 
unexpected event occurrence conditions is considered. The proactive baseline schedule protects against 
anticipated occurrences that may appear during the schedule execution. The machine breaking time is searched 
and the information is used to generate a robust schedule. In the paper the method of data acquisition basing on 
probability theory is proposed. The time of machine breaking is acquired from historical data of frequency  
of machine failure. A numerical example of building a hypothesis H:{the cumulative distribution function of the 
failure time is a normal distribution}, verification of the hypothesis, and predictive scheduling is presented. The 
normal distribution is proposed to describe failure time of machine as it gives consideration to a gradual wear 
process of the machine. The paper is proposition of improving simulation systems such as the Enterprise 
Dynamics or Taylor and scheduling systems such as Knowledge based Rescheduling System and Multi Objective 
Immune Scheduling Algorithm. 

1. INTRODUCTION 

The baseline schedule involves allocating jobs to constrained resources using some 
measures to evaluate the performance of a solution. From the baseline schedule some crucial 
information are read: peak and low capacity, requirement periods for material procurement 
and ability to meet deadlines of jobs execution. During execution of the schedule some 
uncertain events may take place such as: jobs may take more or less time than previously 
estimated, resources may become unavailable, machine can be broken, material and rough 
products suppliers may deliver overdue, jobs priority may change, some jobs may be phased 
out from production and some may be introduced into production, due dates may be 
modified. Uncertainty should be included in the process of job scheduling. The problem is to 
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generate a workable, proactive baseline schedule under production constraints and 
unexpected event occurrence conditions. The proactive baseline schedule protects against 
anticipated occurrences that may appear during the schedule execution.  

The problem is to generate the workable, proactive baseline schedule based on 
knowledge acquired from historical data about frequency of machine work disturbances. 
Making an assumption that data acquisition, feedback and quick response are crucial in real 
time, computer aided scheduling and control systems are searched. The proactive scheduling 
should be based on predictable disturbances using on-line data processing and uncertain 
disturbances using historical data processing. In the paper theory of probability is used to 
acquire data about mean time to failure of machine MTTF (Mean Time To Failure) from  
a sample of machine failure frequency. 

After an unexpected event appears the schedule becomes unfeasible and rescheduling 
interval occurs. The more changes in the initial schedule are the less robustness the schedule 
has. The solution robustness of the schedule does not depend on the rescheduling interval 
(the schedule nervousness) as much as a stability of the schedule. After the unexpected event 
occurs newly generated schedule should be similar to the initial one. According to [1], the 
schedule is stable if the proper amount of resources can be ordered if booked in advance 
based on the initial schedule and a single disruption occurs during schedule execution. The 
solution robust schedule is basic to identify capacity requirement periods, plan external 
activities such as tools and materials procurement, preventive maintenance, fulfill due dates 
requirements, effective resource utilization.  

The schedule is quality robust if a value used to evaluate the schedule, such as 
makespan, lateness/tardiness deviation, number of tardy jobs, resource utility, is under the 
given threshold. Taking into account disturbances previously mentioned, the quality 
robustness of the schedule means the insensitivity of the schedule to disturbance that results 
in affecting the value of criterion used to evaluate quality of the schedule [2].  

Three problems connected with the predictive scheduling are: data acquisition, the 
solution robust scheduling and quality robust scheduling. The paper is proposition  
of improving simulation systems such as the Enterprise Dynamic and Taylor because  
of main shortcomes: 

Jobs are scheduled according to priority rules such as: FIFO, LIFO, Random, Sort by 
label ascending (for example job with lowest duration time), Sort by label descending, user 
can predefine which location in a queue has a new job. No optimization in order to reach the 
optimal schedule is done taking into account criteria such as Makespan, Total Tardiness, 
Machine utilisation. No multi criteria optimization is performed.    

The Enterprise Dynamics and Taylor are simulation systems but there is no knowledge 
acquisition. Systems generate predictive schedules for data introduced by a decision maker. 
For each machine the decision maker can define MTTF using various distributions but there 
is no possibility to adjust the distribution to the data and to estimate its parameters.  
The decision maker defines parameters.  

 After the disturbance has occurred new simulation with new input parameters and new 
constrains is performed. There are no parameters used to evaluate the solution and quality 
robust schedules.    
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In response to the shortcomes following solutions are proposed: 
• Using Multi Objective Immune Scheduling Algorithm (MOIA) for optimization [6]. 
Output of MOIA is an order of jobs reached for given constrains and given criteria can be 
used as an input data to the simulation systems.   
• Working out the predictive system that generates predictive schedule using methods 
for data acquisition appropriate for the disruption. The method used for the disruption 
depends on data collection and uncertainties of disturbances. In the paper the method based 
on probability theory for MTTF estimation is proposed. 
• Working out the reactive system that generates both quality and solution robust 
schedules. 

The paper is also a proposition of improving scheduling systems such as Knowledge 
based Rescheduling System [3] and Multi Objective Immune Scheduling Algorithm [6]. 

The paper is organized as follows: Section 2 describes the problem of predictive and 
reactive scheduling and data acquisition based on probability theory. Section 3 describes the 
methodology of building a hypothesis H:{the cumulative distribution function of the failure 
time Xi is F0(xi)} and verification of the hypothesis H.  A numerical example of data 
acquisition and predictive scheduling is presented in Section 4. The paper is summarized  
in Section 5. 

2. PROBLEM FORMULATION 

A shop scheduling problem is stated as follows: N jobs, Nj, j=1,…,N, have to be 
executed on M machines Mi, i=1,…,M, each job consists of O operations Oj,k, k=1,..,O, and 

MO ≤ , operations are nonpreemptive. Some operations of jobs are predefined to single 
machines, other can be executed on subset SMi,k of the machine Mi, { }1,0, =kism . 1, =kism   

if the operation k can be executed on machine Mi, otherwise 0, =kism .  It is assumed, that 

during a scheduling horizon an uncertain disruptions can occur. Machine Mi can work 
without failures or needs to be repaired.  

Repairing time yi for each machine is predefined. Let Xi define a failure time  
of machine i, the probability that the machine Mi  will be broken at time t, ( ) RAAXP iiii ⊂∈ ,  

and baAi ,= , a is a start time of the predefined schedule, b is a stop time of the predefined 

schedule. Given the failure time xi, the probability that machine Mi will be down at certain 
time t can be calculated. 

Let us assume that we have past data about the failure frequency of the machine Mi. 
For each machine Ui observations have been done, Xi,h, h=1,…,Ui, and 

iUii xx ,1, ,...,  describe 

frequencies of machine Mi failures. A cumulative distribution function of the failure time Xi 
is not known. Basing on a histogram built from historical data of the machine Mi , iUii xx ,1, ,...,  

a hypothesis is set: 
 

Hi:{the cumulative distribution function of the failure time Xi is F0(xi)}            (1)  
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xi a      0           b 

F(a) 

F(b) 
( ) ( )aFbF ii −  

y=F(xi) 

xi EXi   t 

y=f(xi) 

In order to verify the hypothesis, a test of goodness of fit between the valuated 
distribution of the sample and the theoretical distribution (1) is realised. Two tests  
of goodness of fit can be used: chi-square test and Kołogomorow’s test [5]. If the 
distribution function ( )ixf of the machine’s breaking time Xi and their parameters are known 

following probabilities can be calculated [4]: 
 

- Probability that machine Mi will be broken at certain time t, ( )tPi  as follows: 

( ) ( )∫=
t

ii dxxftP
0

                                                              (2) 

 
 
       
 

Fig. 1. The Normal distribution  

Let us assume that the distribution function ( )ixf  of the machine’s breaking time Xi is  

a Normal distribution and the graphical presentation of probability that machine Mi will be 
broken at certain time t. ( )tPi  is presented in Fig.1. 

- Probability that the machine Mi will be broken at time from the range baA ,= , ( )bxaP ii <≤  

is calculated: 

( ) ∫=<≤
b

a

iii dxxfbxaP )(                                                       (3) 

If we have the cumulative distribution function of the machine’s repairing time Xi the 
probability ( )bxaP ii <≤  that the machine Mi will be broken at time from the range baA ,=  

is calculated: 

( ) ( ) ( )aFbFbxaP iiii −=<≤                                                     (4) 

 

 

 

 

Fig. 2. The cumulative distribution function 

( )tPi  
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Let us assume the cumulative distribution function of the machine’s repairing time Xi is the 
Normal distribution then the graphical presentation of the probability ( )bxaP ii <≤  that the 

machine Mi will be broken at time from the range baA ,=  is presented in Fig. 2. 

- Also, an average time between the machine’s failures EXi from the distribution function  
of the machine’s repairing time Xi is read [4]: 

∫
∞

∞−

= dxxfxEX iii )(                                                             (5) 

A variance of the machine’s repairing time Xi is an average value of the squared deviation 
of the machine’s repairing time Xi from its average value EXi [4]: 

( ) ( )222
iii EXXEXD −=                                                      (6) 

The hypothesis setting and verification are performed for W samples 
iUłiZ ,, , ł=1,…,W 

for machine Mi and each sample involves Ui observations. For the scheduling horizon 
baW ;1=+  from the set of { }łii EXA ,=  and the set of { }łii XDB ,

2=  using a linear regression  

a future time between the machine’s failures 1, +WiEX and a future variance of the machine’s 

failure time 1,
2

+WiXD  are read. In order to simplify the understanding of predictive 

scheduling problem the mathematical formulation and numerical example of the problem is 
presented for one sample.  

2.1. PREDICTIVE SCHEDULING 

The basic schedules are generated using MOIA [5].  The article is also the proposition 
of developing MOIA application to predictive scheduling. MOIA is used to give priority 
rule of jobs to minimize makespan criterion Cmax. Predictive scheduling consists in placing 
an operation on the machine from the subset SMi,k if the operation was preliminary  assigned 
(using MOIA) to Mi at the time window (7). 

 

iSiSiSiSi yXDEXaXDEXa +++−+ ++++ 1,
2

1,1,
2

1, ,                                    (7) 

The operation is assign to the machine from the subset SMi,k using earliest finishing 
time of the operation (ETFR rule). If at least two end times of execution of the operation 
assigned to the machines from the subset SMi,k are equal, the operation is assigned to the 
machine for which no disturbance is forecasted.  

The Flexibility Priority Rule (FPR rule) is in force if ETFR rule cannot be used 
because there is no solution fulfilling the production route constrains. In that case, for orders 
of jobs proposed by the MOIA for the operation executed at the time window of machine  
Mi (7) FPR is computed (8).  
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The operation Oj,k is flexible if it can be executed on at list one machine from the subset 
SMi,k of the Mi and machine is idle and production routes constrains are fulfilled. The more 
machines the operation Oj,k can be executed on, the higher flexibility priority value of the 
operation k is.  

Let us assume that Sp, p=1,…,S states as a number of best solutions given by MOIA.  
S by a decision maker is predefined. A flexibility priority value FPRi,p for given machine  
Mi and given order of operation Sp  is counted according to: 

kpi

kpi
pi FM

FM
FPR

,,

,,
, max

=                                                                (8) 

{ }∑
=

=
M

i
piFM

1
, 1,0                                                                   (9) 

where: 1 if operation Oj,k, can be executed at the time window (7) on machine Mi from the 
subset SMi,k and machine Mi is idle and the production route constrains are fulfilled, 0  
if operation Oj,k, can be executed on machine Mi from the subset SMi,k but machine Mi is not 
idle or the production route constrains is not fulfilled, maxFMi – maximal value of { }piFM , . 

The equation (8) is given taking into account that only one operation can be executed in the 
time window. Further researches must be given in the subject of predictive scheduling. 
The objective of scheduling is to find an order of jobs on machines that minimizes the 
makespan Cmax, 

{ }NjCC j ,...,1maxmax ==                                                            (10) 

where: Cj is the completion time of job Jj.  

2.2. REACTIVE SCHEDULING 

It is assumed, that during the scheduling horizon uncertain disruptions can occur.  
The disruption has an irreversible effect on Cmax. kjist ,,  is a start time of operation k, of job j 

on machine Mi. A time the disturbance occurs Dt is the starting point form that operations 
are rescheduled, Dtst kji >,, . The operation of the job interrupted by the disturbance is 

finished after the disturbance is eliminated.  
Two criteria are optimised in the reactive scheduling: the solution and quality 

robustness. The solution robustness (the instability) SR of the reactive schedule RS is 
measured by computing the starting times deviations between operations of the reactive 
schedule and operations of the previous schedule PS:  

( ) ( )∑
=

−=
N

j
kjikji RSstPSstRSSR

1
,,,,)(                                           (11) 
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Quality robustness QR is measured as deviation between makespan of RS and makespan  
of PS: 

 ( ) ( )∑
=

−=
N

j
maz RSCPSCRSQR

1
max)(                                             (12) 

After a new disturbance occurs ( ) ( )PSSRRSSR ⇒  and ( ) ( )PSQRRSQR ⇒  rescheduling 
procedure is started. The goal is to minimize the SR(RS) and QR(RS).           

3. HISTOGRAM BUILDING AND VERIFICATION OF HYPOTHESIS 

Procedure of histogram building is based on [5]. 
iUii xx ,1, ,..., , i=1,…,M is a sample  

of data of machine Mi failure frequency. A range of Xi in the sample 
iUii xx ,1, ,...,  Ri equals: 

min
,

max
, ii uiuii xxR −=                                                              (13) 

where: max
, iuix  is the maximal value of the sample of machine Mi, 

min
, iuix  is the minimal value of 

the sample of machine Mi. Values from the sample are grouped into classes – equally length 
intervals. A number of classes is: 

  ii Uk =                                                                  (14) 

where: Ui is the number of observations (samples) for machine Mi.  
The length of the class is: 

i

i
i k

R
b ≈                                                                  (15) 

bi value is approximated with an excess. Limit of classes is counted with accuracy to iα
2

1
, 

where iα  is the accuracy of evaluated values in the sample and reaches the maximal value 

from the scope 1,005,0 −  under the condition that the values 
iUii xx ,1, ,...,  divided by iα  give 

integer results [5]. A bottom limit of first class equals:  

iuii i
xbx α

2

1min
,

min −=                                                               (16) 

A number of values of the sample for machine Mi belonging to p-th class is a size of class 

ni,p, p=1,2,…,P and i

s

p
pi Un =∑

=1
, . A distributive series are described by: a center of the class 

pix ,  and the size of class ni,p. 
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The question is: does a cumulative distribution function of the failure time Xi has the 
normal distribution ( )iiiN σµ , ?. The normal distribution is used to describe failure time Xi  

of machine Mi as it gives consideration to a gradual wear process of the machine. 
Verification of hypothesis Hi:{the cumulative distribution function of the failure time Xi is 
F0(xi) and the distribution of the failure time of machine Mi is ( )iiiN σµ , } using 

Kołomogorow’s test is performed [5]: 

( ) ( )pippip
x

pi gFgSD
i

,,, sup −=                                                     (17) 

where: Di,p is an upper limit from absolute values of differences, ( )pip gS ,  is an empirical 

cumulative distribution function basing on the ordered limits of classes: 

( ) ( ) ( ) ( )Pipiii gggg ,,2,1, ...... ≤≤≤≤≤                                               (18) 

The empirical cumulative distribution for grouped data (ordered in classes):  

( )

( )

( ) ( )

( ) ( )
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where: Pipiii nnnn ,,2,1, ,,,,, KK  are sizes of classes. 

A standarised right limit of the class: 

( )ipipi gr µ−= ,,                                                             (20) 

iµ  is the middle class limit. 

Values of cumulative distribution function ( )pigF ,  for the distribution ( )1,0N  of the 

failure time of machine Mi are read from table 5 [5]. max
,piD  is the maximal value of piD , .  

If the condition (21) is fulfilled it means that the results of the sample with the significance 
level iα  does not deny the hypothesis Hi :{ the failure time of machine Mi has the 

distribution of ( )iiiN σµ , }. 

( )ipii DU αλ −< 1
max
,                                                             (21) 
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4. NUMERICAL EXAMPLE 

The machine M5 failure frequency, is described by the sample, U5=30.  Failure 
frequency of M5 is as follows:  5,4; 5,2; 3,8; 4; 5,8; 6,4; 3,1; 6,2; 3,5; 3,9; 4; 4,1; 5,8; 4,3; 
4,4; 5,2; 4,5; 4,7; 4,7; 4,8; 4,4; 5,2; 5; 5,9; 5; 5,1; 5,2; 5,3; 5,6; 5,5. The average time 
between the machine’s failures EX5 is searched. The distribution function of the 5th 
machine’s repairing time X5 need to be found.  
The number of classes equals: 

    647,5305 ===k                                                          (22) 

The maximal and minimal values of the sample equals: 

 1,3,4,6 min
7,5

max
6,5 == xx                                                            (23) 

The range of X5 in a sample x5,1…x5,30  equals: 

3,3min
7,5

max
6,55 =−= xxR                                                            (24) 

The length of the class is: 

6,055,06/3,3
5

5
5 ≈==≈

k

R
b                                                        (25) 

The accuracy of values in the sample is 1,05 =α , because values from the sample x5,1…x5,30  

divided by 1,05 =α  give integer results and no bigger value iα  exists. The bottom limit of the 

first class equals:  

05,305,01,3
2

1min
7,5

min
5 =−=−= αxbx                                                      (26) 

The distributive series are presented in Table 1. The histogram for the frequency of machine 
M5 failure is presented in Fig. 3. 

 
Table 1. The distributive series of the sample 

The distributive series No of 
class 

Class 

pix ,  ni,p 

1 
2 
3 
4 
5 
6 

3,05 - 3,65 
3,65 - 4,25 
4,25 - 4,85 
4,85 - 5,45 
5,45 - 6,05 
6,05 - 6,65 

3,35 
3,95 
4,55 
5,15 
5,75 
6,35 

3 
5 
7 
8 
5 
2 
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Fig. 3. The histogram of the frequency of machine M5 failure 

 

 

The question is what cumulative distribution function describes the failure time  
of machine M5?  Taking into account sizes of classes n5,p one can assume that the 
distribution of sizes of classes is approximated to symmetrical distribution. The distribution 
has one mode with maximal value in one of the middle classes. The hypothesis is H5:{the 
distribution of the failure time of machine M5 is ( )555 ,σµN }. 

The question is that: what values of parameters 55 ,σµ  are? Let as assume 85,45 =µ , in 

the interval 65,6,05,3 . If the length of the interval equals to 3.6, and there are 

( ) 252330 =+−  solutions, 83% solutions will be contained in. Probability of reaching  

a value from the interval σµσµ 96,1,96,1 −−  equals to 95% in the distribution( )σµ,N . 

The average value with the number of samples U5=30, slightly differs from 28,5.  As the 
length of the interval in the distribution ( )σµ,N equals to σ92,3  and the length of the 

interval 1,, , +pipi gg  of the researched distribution equals to 0,6, 15,0=iσ . The hypothesis 

H5:{ the failure time of machine M5 has the distribution of ( )15,0,85,45N }           (27) 

has been assumed. Using the Kołmogorow’s test the hypothesis is verified. The limits of the 
classes pig , , the sizes of the classes ni,p, the values of ( )pip gS , , pir , , ( )pip gF ,  and 

( ) ( )pippip gFgS ,, −  are presented in Table 2. 

26528,004843,0306,55 =⋅=dU                                 (28) 

The quintile of row 9,01 5 =−α  limited Kołomogorow’s distribution is ( ) 224,19,0 =λ . 

Because 224,126528,0 < , the results of the sample with the significance level 1,05 =α  do not 

deny the hypothesis H5. 
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Table 2. Data used for hypothesis H5 verification 

P pig ,  ni,p ( )pip gS ,  pir ,  ( )pip gF ,  ( ) ( )pippip gFgS ,, −  

1 
2 
3 
4 
5 
6 
7 

- 3,05 
3,05 - 3,65 
3,65 - 4,25 
4,25 - 4,85 
4,85 - 5,45 
5,45 - 6,05 
6,05 - 6,65 

    0 
3 
5 
7 
8 
5 
2 

0 
0,1 

0,267 
0,5 

0,767 
0,93 

1 

-1,8 
-1,2 
-0,6 
0 

0,6 
1,2 
1,8 

0,0359 
0,1151 
0,2743 

0,5 
0,7257 
0,8849 
0,9641 

0,0359 
0,0151 
0,00763 

0 
0,040967 

0,04843= max
6,5D  

0,0359 

In order to generate the predictive schedule the information of the average time 
between the machine M5 failure is needed MTTF5= EX5. MTTF5 from the distribution 
function of the machine’s repairing time ( )15,0,85,45N  is read: 

( ) ( ) 2
5

2
55 2

5

5
2

1 σµ

πσ
−−= xexf                                                        (29) 

where: 15,0,85,4 55 == σµ  

Density of distribution ( )15,0,85,45N  for the frequency of machine M5 failure is presented in 

Fig. 4. In the distribution ( )σµ,N  [4]: 
 µ=EX                                                                  (30) 

22 σ=XD                                                                 (31) 

The average time between the machine’s M5 failures EX5 
85.455 == µEX                                                             (32) 

 

 
Fig . 4. The density of  distribution ( )15,0,85,45N  for the frequency of machine M5 failure 
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A variance of the machine’s M5 repairing time X5 is: 

0225.05
2 =XD                                                             (33) 

Let us assume there are W=10 samples of machine M5 frequency failure. According to 
data from first sample ł=1 , the average time between the machine M5 failures equals 

85.41,5 =EX , and the variance of the machine M5 failures time X5 equals 0225,01,5
2 =XD .  

Let us assume the sets of { }9.4,1.5,2.5,8.4,5,8.4,67.4,75.4,5,85.45 =A  and 

{ }0196.0,0256.0,0225.0,01.0,0225.0,0256.0,0225.0,01.0,0225.05 =B . The average time between the 

machine M5 failures 1,5 +WEX  for the scheduling horizon W+1, and the variance of the 

machine M5 failures time 1,5
2

+WXD  for the scheduling horizon W+1 are read form linear 

regressions (Fig. 5 and Fig. 6).  

y =  0,0242x +  4,774

3
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Fig. 5. The average time between the machine’s M5 failures 

Let us assume that the scheduling horizon is 16;0  and repairing time y5 for machine 

M5 is y5=3.5. Because of 0402.511,5 =EX  and 0222.01,5
2 =+WXD , the time window when 

machine M5 is probable to be broken equals 5624.8,018.5 . The predictive scheduling 

problem consists in assigning three jobs described by Matrix of Production Routes MP (34), 
Matrix of Processing Time MT (35) into five machines, with information that machine M5 
can be not available at the time window 5624.8,018.5 . The subset SM5,k (36) of the M5 

describes machines on which operations can be executed in case of M5 failure. 
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Fig. 6. The variance of the machine M5 failures time 1,5
2

+WXD  

Let us consider the order of jobs [J2, J1, J3] proposed by the MOIA. Cmax of the basic 
schedule equals 14. The predictive schedule is generated using ETFR rule for the operation 
O3,5  that was preliminary assigned to M5 at time window 5624.8,018.5 . The operation O3,5  

can also be executed on machine M3 (A) or M4 (B) as the condition that the machines are 
idle is fulfilled. According to the production route constrains the 3rd operation of J3 can not 
be executed on M4. To generate predictive schedule ETFR rule is used for the 3rd operation 
taking into account two possibilities M3 and M5. As end times of execution of the operation 
are equally the operation is assigned to the machine for which no disturbance is forecasted.  

The predictive schedule is presented in Fig. 7. 

 

 

 

 

 

 

 

Fig. 7. The Gantt chart for the predictive scheduling problem  

The rule FPR is in force if ETFR rule cannot be used because no machine is idle or 
because of the production route constrains. Further researchers should be given to minimize 
Cmax criterion.  
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5. SUMMARY 

In the paper the problem to generate a workable, proactive baseline schedule under 
production constraints and unexpected event occurrence conditions is considered. The 
proactive baseline schedule protects against anticipated occurrences that may appear during 
the schedule execution. The time of machine breaking is searched and the information is 
used to generate the robust schedule. In the paper the method of data acquisition basing on 
probability theory is proposed. A numerical example of building a hypothesis H:{the 
cumulative distribution function of the failure time is the normal distribution}, verification 
of the hypothesis, and predictive scheduling is presented.  

The paper is proposition of improving simulation systems such as the Enterprise 
Dynamics or Taylor and scheduling systems such as Knowledge based Rescheduling System 
or Multi Objective Immune Scheduling Algorithm. 

In the future work, a model of machine failures will be considered in the successive 
failure-free times with Weibull distributions and followed by exponentially distributed times 
of repairs. The goal is to work out the predictive scheduling system reflecting a production 
system and nature of disturbances able to estimate unknown parameters of the system.    
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