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PREDICTIVE SCHEDULING BASED ON KNOWLEDGE ACQUIRED
FROM FREQUENCY OF MACHINE WORK DISTURBANCES

During execution of a schedule some uncertain everdy take place for example: resources may become
unavailable, machine can be broken. Uncertaintylshbe included in the process of job schedulimgthe
paper the problem to generate a workable, proadiizeeline schedule under production constraints and
unexpected event occurrence conditions is congsidefdne proactive baseline schedule protects against
anticipated occurrences that may appear duringt¢hedule execution. The machine breaking timeascbed

and the information is used to generate a robustdide. In the paper the method of data acquishimsing on
probability theory is proposed. The time of machbreaking is acquired from historical data of freqcy

of machine failure. A numerical example of buildiadwypothesis H:{the cumulative distribution fuictiof the
failure time is a normal distribution}, verificatioof the hypothesis, and predictive schedulingrésented. The
normal distribution is proposed to describe failtirre of machine as it gives consideration to algeh wear
process of the machine. The paper is propositionmpufroving simulation systems such as the Entegpris
Dynamics or Taylor and scheduling systems suchremvédge based Rescheduling System and Multi Glsgect
Immune Scheduling Algorithm.

1. INTRODUCTION

The baseline schedule involves allocating jobs dostrained resources using some
measures to evaluate the performance of a soldtimm the baseline schedule some crucial
information are read: peak and low capacity, resaent periods for material procurement
and ability to meet deadlines of jobs executionrib execution of the schedule some
uncertain events may take place such as: jobs atayrhore or less time than previously
estimated, resources may become unavailable, meaciin be broken, material and rough
products suppliers may deliver overdue, jobs ggianiay change, some jobs may be phased
out from production and some may be introduced imtoduction, due dates may be
modified. Uncertainty should be included in thegass of job scheduling. The problem is to
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generate a workable, proactive baseline schedulgerumproduction constraints and
unexpected event occurrence conditions. The preatiaseline schedule protects against
anticipated occurrences that may appear duringchedule execution.

The problem is to generate the workable, proacbeseline schedule based on
knowledge acquired from historical data about feegry of machine work disturbances.
Making an assumption that data acquisition, feekilaad quick response are crucial in real
time, computer aided scheduling and control sysi@msearched. The proactive scheduling
should be based on predictable disturbances usidg® data processing and uncertain
disturbances using historical data processinghénpaper theory of probability is used to
acquire data about mean time to failure of machi@F (Mean Time To Failure) from
a sample of machine failure frequency.

After an unexpected event appears the schedulartescanfeasible and rescheduling
interval occurs. The more changes in the initilestule are the less robustness the schedule
has. The solution robustness of the schedule doedapend on the rescheduling interval
(the schedule nervousness) as much as a stalbititg achedule. After the unexpected event
occurs newly generated schedule should be sinal#né initial one. According to [1], the
schedule is stable if the proper amount of resauoam be ordered if booked in advance
based on the initial schedule and a single dissapticcurs during schedule execution. The
solution robust schedule is basic to identify cayaquirement periods, plan external
activities such as tools and materials procurenmeientive maintenance, fulfill due dates
requirements, effective resource utilization.

The schedule is quality robust if a value used valiate the schedule, such as
makespan, lateness/tardiness deviation, numbeardy jobs, resource utility, is under the
given threshold. Taking into account disturbancesvipusly mentioned, the quality
robustness of the schedule means the insensitivitye schedule to disturbance that results
in affecting the value of criterion used to evaduquality of the schedule [2].

Three problems connected with the predictive sclwgiiare: data acquisition, the
solution robust scheduling and quality robust sdalied. The paper is proposition
of improving simulation systems such as the EnieepDynamic and Taylor because
of main shortcomes:

Jobs are scheduled according to priority rules a&hFIFO, LIFO, Random, Sort by
label ascending (for example job with lowest dunmatiime), Sort by label descending, user
can predefine which location in a queue has a &wNo optimization in order to reach the
optimal schedule is done taking into account dateuch as Makespan, Total Tardiness,
Machine utilisation. No multi criteria optimizatios performed.

The Enterprise Dynamics and Taylor are simulatygstesns but there is no knowledge
acquisition. Systems generate predictive schedaledata introduced by a decision maker.
For each machine the decision maker can define MISiikg various distributions but there
is no possibility to adjust the distribution to thiata and to estimate its parameters.
The decision maker defines parameters.

After the disturbance has occurred new simulatdh new input parameters and new
constrains is performed. There are no paramet&d tsevaluate the solution and quality
robust schedules.
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In response to the shortcomes following soluticresproposed:

. Using Multi Objective Immune Scheduling AlgorithiQIA) for optimization [6].
Output of MOIA is an order of jobs reached for giveonstrains and given criteria can be
used as an input data to the simulation systems.

. Working out the predictive system that generatesliptive schedule using methods
for data acquisition appropriate for the disruptidine method used for the disruption
depends on data collection and uncertainties @f@itiances. In the paper the method based
on probability theory for MTTF estimation is projgols

. Working out the reactive system that generates lopthlity and solution robust
schedules.

The paper is also a proposition of improving schiagusystems such as Knowledge
based Rescheduling System [3] and Multi Objectimenune Scheduling Algorithm [6].

The paper is organized as follows: Section 2 deesrihe problem of predictive and
reactive scheduling and data acquisition basedroibapility theory. Section 3 describes the
methodology of building a hypothesis H:{the cumivatdistribution function of the failure
time X is Ry(x)} and verification of the hypothesis H. A numalicexample of data
acquisition and predictive scheduling is presenite®ection 4. The paper is summarized
in Section 5.

2. PROBLEM FORMULATION

A shop scheduling problem is stated as followsjobs, N, j=1,...,N have to be
executed oM machinedV;, i=1,...,M, each job consists @ operationg;,, k=1,..,Q and
O< M, operations are nonpreemptive. Some operationshs are predefined to single
machines, other can be executed on subbkf 8f the machinevi;, sm, ={01. sm, =1

if the operatiork can be executed on machikk otherwisesm, =0. It is assumed, that

during a scheduling horizon an uncertain disrugi@an occur. Machin®l; can work
without failures or needs to be repaired.

Repairing timey; for each machine is predefined. L¥t define a failure time
of machinei, the probability that the machimé will be broken at time tP(X, JA),A OR

and A =(a,b), ais a start time of the predefined schedblés a stop time of the predefined

schedule. Given the failure timg the probability that machiné!; will be down at certain
timet can be calculated.

Let us assume that we have past data about theefdiequency of the machiné,.
For each machin®&; observations have been doig,, h=1,...,U, and x,,...x, describe

frequencies of machind; failures. A cumulative distribution function of tli@lure timeX;
is not known. Basing on a histogram built from twital data of the machind; , x,,...x

a hypothesis is set:

H;:{the cumulative distribution function of the farkitimeX; is Fo(x)} (1)
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In order to verify the hypothesis, a test of goadnef fit between the valuated
distribution of the sample and the theoretical rihstion (1) is realised. Two tests
of goodness of fit can be used:. chi-square test lkolbgomorow’s test [5]. If the
distribution function f (x,)of the machine’s breaking timé and their parameters are known

following probabilities can be calculated [4]:

- Probability that machin®; will be broken at certain time P (t) as follows:

(2)

\ 4

Fig. 1. The Normal distribution

Let us assume that the distribution functiéfx ) of the machine’s breaking tims is

a Normal distribution and the graphical presentatd probability that machin®; will be
broken at certain time P (t) is presented in Fig.1.

- Probability that the machiri; will be broken at time from the range=(a,b), P(a<x <b)
is calculated:

Rlasx <b)=ff(mdx (3)

If we have the cumulative distribution function thfe machine’s repairing timg; the
probability P(a< x <b) that the machin#i will be broken at time from the range=(a,b)

is calculated:

R(asx <b)=F(b)-F(a) 4)

|

I
a o0 b

XV

Fig. 2. The cumulative distribution function
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Let us assume the cumulative distribution functtbthe machine’s repairing timg is the
Normal distribution then the graphical presentatidrthe probabilityP(a<x <b) that the

machineM; will be broken at time from the range=(a,b) is presented in Fig. 2.

- Also, an average time between the machine’srigslgEX, from the distribution function
of the machine’s repairing tim§ is read [4]:

EX, = [ % (x)dx (5)

A variance of the machine’s repairing timgiX an average value of the squared deviation
of the machine’s repairing time ¥om its average valugX; [4]:

DX, =E(x?)-(EX ? (6)

The hypothesis setting and verification are pertrfor W samplesz,, , t=1,...,W

for machineM; and each sample involvdd; observations. For the scheduling horizon
W+1=(ah) from the set ofA ={EX,} and the set oB ={DX;,} using a linear regression

a future time between the machine’s failuees,,,,and a future variance of the machine’s
failure time D?X,,, are read. In order to simplify the understandirfy poedictive

scheduling problem the mathematical formulation andherical example of the problem is
presented for one sample.

2.1. PREDICTIVE SCHEDULING

The basic schedules are generated using MOIA ThBE article is also the proposition
of developing MOIA application to predictive schédg. MOIA is used to give priority
rule of jobs to minimize makespan criteriGf. Predictive scheduling consists in placing
an operation on the machine from the sub$&i & the operation was preliminary assigned
(using MOIA) toM; at the time window (7).

<a+ Ex,sﬂ - szi,sﬂ’ at EXi,S+1 + D2>(i,S+l + yl > (7)

The operation is assign to the machine from thesetuBM; using earliest finishing
time of the operation (ETFR rule). If at least tenod times of execution of the operation
assigned to the machines from the subdéf, &re equal, the operation is assigned to the
machine for which no disturbance is forecasted.

The Flexibility Priority Rule (FPR rule) is in foecif ETFR rule cannot be used
because there is no solution fulfilling the prodmctroute constrains. In that case, for orders
of jobs proposed by the MOIA for the operation axed at the time window of machine
M; (7) FPR is computed (8).
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The operatiorQ; is flexible if it can be executed on at list onaahine from the subset
SM; « of theM; and machine is idle and production routes consdrare fulfilled. The more
machines the operatidd; can be executed on, the higher flexibility pripnalue of the
operatiork is.

Let us assume th&,, p=1,...,Sstates as a number of best solutions given by MOIA
S by a decision maker is predefined. A flexibilityigrity value FPR, for given machine
M; and given order of operati@ is counted according to:

FM, ok
FPF,Rp = (8)
' maxFMi‘pvk
M
I:I\/Ii,p :z{o']} (9)

i=1

where: 1 if operatior®;, can be executed at the time window (7) on macMn&om the
subsetSM and machingV; is idle and the production route constrains afélléd, O
if operationQ;, can be executed on machikefrom the subseM  but machineV; is not
idle or the production route constrains is notifledfl, maxFMi— maximal value o{FMi'p}.

The equation (8) is given taking into account tbrally one operation can be executed in the
time window. Further researches must be givenerstibject of predictive scheduling.

The objective of scheduling is to find an orderjald)s on machines that minimizes the
makespartC,,ay

Coae =MaxC |j =1...,N} (10)

where:C; is the completion time of jod.

2.2. REACTIVE SCHEDULING

It is assumed, that during the scheduling horizogedain disruptions can occur.
The disruption has an irreversible effect@py,. st ;, is a start time of operatidg of jobj

on machineM;. A time the disturbance occuld is the starting point form that operations
are rescheduledst ;, >Dt. The operation of the job interrupted by the disamce is

finished after the disturbance is eliminated.

Two criteria are optimised in the reactive schedulithe solution and quality
robustness. The solution robustness (the instgbiBR of the reactive schedule RS is
measured by computing the starting times deviatiogisveen operations of the reactive
schedule and operations of the previous schedule PS

SR(RS) = ' Ist, ;. (PS)-st,;, (RS) (11)

i=1
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Quality robustness QR is measured as deviationdstwnakespan of RS and makespan
of PS:

QR(RS) = 3. [C,, (PS) - C,p, (RS) (12)

After a new disturbance occurSRRS) = SRPS) and QR(RS)= QR(PS) rescheduling
procedure is started. The goal is to minimize tRéRS) and QR(RS).

3. HISTOGRAM BUILDING AND VERIFICATION OF HYPOTHESS

Procedure of histogram building is based on [®],...x, , i=1,...,M is a sample
of data of machin®; failure frequency. A range of in the samplex,,...x,, R equals:

R =X =X (13)

where: X"t is the maximal value of the sample of machihe X7 is the minimal value of

the sample of machind;. Values from the sample are grouped into classsgrally length
intervals. A number of classes is:

k =4U; (14)

where:U; is the number of observations (samples) for masdkin
The length of the class is:

R
b=t (15)
K
b; value is approximated with an excess. Limit ofssks is counted with accuracy%mri,

where g, is the accuracy of evaluated values in the samptereaches the maximal value
from the scopg 005- 01) under the condition that the valugs,...x,, divided bya; give
integer results [5]. A bottom limit of first classgjuals:

in min 1
b){n :)ﬁ,ui _Eal (16)

A number of values of the sample for machiviebelonging top-th class is a size of class

Nip, P=1,2,...,Pand >'n =U,. A distributive series are described by: a ceofehe class
p=1

X o and the size of clasg,.
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The guestion is: does a cumulative distributionction of the failure timex; has the
normal distributionN, (,0,)?. The normal distribution is used to describeufailtimeX;

of machineM; as it gives consideration to a gradual wear proad#sshe machine.
Verification of hypothesi$i;:{the cumulative distribution function of the farki timeX; is
Fo(x) and the distribution of the failure time of maahil;, is N, (x,0,)} using

Kotomogorow'’s test is performed [5]:
D, :S:J#Sp(gi,p)_ Fp(gi,p} (17)

where:D;, is an upper limit from absolute values of differes, Sp(gi,p) is an empirical
cumulative distribution function basing on the artklimits of classes:

g(i,l) < g(i,Z) <..< g(i,p) <...< g(i,P) (18)

The empirical cumulative distribution for groupeatal (ordered in classes):

0 if x< g(i,o)
ni,l .
U if gio) S X<y
| (19)
Nig ¥ Nip
Sn(gi,p): ' _ = if gy S X<y
1if x= g(i,P)
where:n,,n,,...n ,...,n, are sizes of classes.
A standarised right limit of the class:
lip = (gi,p _,ui) (20)

4 is the middle class limit.

Values of cumulative distribution functio(g; ,) for the distributionN(01) of the
failure time of machinéV; are read from table 5 [5]D7" is the maximal value oD, ;.

If the condition (21) is fulfilled it means thatethresults of the sample with the significance
level a. does not deny the hypothedi§ :{ the failure time of machineM; has the

distribution of N, (1,,0,)}.

J0,00 < Ay @)
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4. NUMERICAL EXAMPLE

The machineMs failure frequency is described by the samplé&ls=30. Failure
frequency ofMs is as follows: 5,4; 5,2; 3,8; 4; 5,8; 6,4; 3,12;63,5; 3,9; 4; 4,1; 5,8; 4,3;
4,4; 5,2; 4,5; 4,7, 4,7, 4,8; 4,4; 5,2; 5; 5,9;%1; 5,2; 5,3; 5,6; 5,5. The average time
between the machine’s failurégXs is searched. The distribution function of th& 5
machine’s repairing timgs need to be found.

The number of classes equals:

k, =+/30=[547]=6 (22)
The maximal and minimal values of the sample equals

X[ = 64, X0y =31 (23)
The range of Xin a samples ;...% 30 equals:

R =55 —Xg7 =33 (24)

The length of the class is:

b, =— = 33/6= 055= 06 (25)

& |0

The accuracy of values in the sampleris=01, because values from the sampig...x 30
divided by a, =01 give integer results and no bigger valmeexists. The bottom limit of the
first class equals:

b = X" —%a - 31- 005= 305 (26)

The distributive series are presented in Tableht. Aistogram for the frequency of machine
M;s failure is presented in Fig. 3.

Table 1. The distributive series of the sample

No of Class The distributive series
class

1 3,05 - 3,65 3,35 3

2 3,65 - 4,25 3,95 5

3 4,25 - 4,85 4,55 7

4 4,85 - 5,45 5,15 8

5 5,45 - 6,05 5,75 5

6 6,05 - 6,65 6,35 2
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The size of the class

3,35 3,95 4,55 5,15 5,75 6,35

The center of the class

Fig. 3. The histogram of the frequency of machhdfailure

The question is what cumulative distribution fuontidescribes the failure time
of machineMs? Taking into account sizes of classgg, one can assume that the
distribution of sizes of classes is approximatedyimmetrical distribution. The distribution
has one mode with maximal value in one of the neiddasses. The hypothesisHs{the
distribution of the failure time of machimés is N, (u;,0,)}.

The question is that: what values of parametgrs, are? Let as assumeg = 485, in
the interval (305 665). If the length of the interval equals to 3.6, atitere are
30-(3+2)=25 solutions, 83% solutions will be contained in. Bability of reaching
a value from the intervalu - 1960, 1-1960) equals to 95% in the distributiof{u,o).

The average value with the number of samples30, slightly differs from 28,5. As the
length of the interval in the distributionl(,0)equals to 3920 and the length of the

interval <gi,p’ gi'p+1> of the researched distribution equals to @;6¢ 015. The hypothesis

Hs:{ the failure time of machin#s has the distribution oK, (485,015)} (27)

has been assumed. Using the Kotmogorow’s testypethesis is verified. The limits of the
classes g, ,, the sizes of the classes, the values ofS,(g,,).r.,.F,(g,,) and

\Sp(gi,p)— Fp(gi,pX are presented in Table 2.

JU.d,, =+/300,04843=0,26528 (28)

The quintile of rowl-a, = 09 limited Kotomogorow’s distribution isl ¢ =1,224.
Because0,26528< 1,224, the results of the sample with the significareeel a, =01 do not
deny the hypothesissH
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Table 2. Data used for hypothesis\irification

P gi,p Iﬂli,p Sp(gi,p) ri,p Fp(gi,p) |Sp(gi,p)_|:p(gi,p1
1 |-3,05 0 0 -1,8 0,0359 0,0359

2 |305 -3,65 3 0,1 -1,2 0,1151 0,0151

3 [365 -425 5 0,267 -0,6 0,2743 0,00763

4 1425 -485 7 0,5 0 0,5 0

5 1485 -545 8 0,767 0,6 0,7257 0,040967
6 (545 -6,05 5 0,93 1,2 0,8849 | 0,04843=D;¢"
7 |6,05 -6,65 2 1 1,8 0,9641 0,0359

In order to generate the predictive schedule tHernmation of the average time
between the machinMs failure is neededMTTR= EXs. MTTF; from the distribution
function of the machine’s repairing timé, (485,015) is read:

f(x)=—

(% _/15)2/ 205
= e 29
o2 (29)

wherei, = 4850, = 015
Density of distributionN,(485,015) for the frequency of machinds failure is presented in
Fig. 4. In the distribution(x, o) [4]:

EX=u (30)

D*X =0° (31)

The average time between the machiné&dailures EX
EX, = /. = 485 (32)

Fig . 4. The density of distributioN5(4,85,O;|.5) for the frequency of machirids failure
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A variance of the machineMsrepairing timeXs is:
D?X, =0.022¢ (33)

Let us assume there ané=10 samples of machinés frequency failure. According to
data from first sampld=1, the average time between the machie failures equals
EXs, =485, and the variance of the machiMg failures time X% equals D*X,, =0022.

Let us assume the sets of A ={4855475467 48548525149  and
B, ={00225001002250.02560.02250010.02250.025€0019%. The average time between the
machineMs failures EX;,,, for the scheduling horizon ¥, and the variance of the
machineMs failures time D*X,,,,, for the scheduling horizol+1 are read form linear
regressions (Fig. 5 and Fig. 6).

5,5
y = 0,0242xw74

A Y

4,5

—EX5,r

Linear regresion

3,5

The average time between
the machine's failures
S

123456 78 91011

The number of sample r

Fig. 5. The average time between the machikk'&ilures

Let us assume that the scheduling horizofoi$ and repairing timgs for machine
Ms is ys=3.5. Because OfEX,,=5040z and D*X,.,, =0022;, the time window when
machine Ms is probable to be broken equa<I§018 8.562%&. The predictive scheduling

problem consists in assigning three jobs descidyellatrix of Production Route€P (34),
Matrix of Processing Tim®T (35) into five machines, with information that rhaee M5

can be not available at the time windg@018 85624. The subset s (36) of theMs
describes machines on which operations can be dtkoucase oMs failure.

10324 20321 011,00
MP =| 43125/, MT =| 22323/, SM,, =| 10110 (34,35,36)
15342 251,22 00110



66 Iwona WOSIK, Baena SKOLUD

0,04

0,03 7 y = 0,0003x + 0,0189

0,01 - ; \/

1 23 456 7 8 91011

Linear regresion

The variance of the machine
M5 failures time

The number of sample r

Fig. 6. The variance of the machil failures time DZXS’W+1

Let us consider the order of joh3,[J;, %] proposed by the MOIAC,,. Of the basic
schedule equals 14. The predictive schedule isrgegteusing ETFR rule for the operation

Os5 that was preliminary assigned tg it time window(5018 85624. The operatiotD; s

can also be executed on machiig (A) or M, (B) as the condition that the machines are

idle is fulfilled. According to the production raitonstrains the"3operation ofJ; can not

be executed oM,. To generate predictive schedule ETFR rule is tisethe 3 operation

taking into account two possibilitiéd; andMs. As end times of execution of the operation

are equally the operation is assigned to the madiinwhich no disturbance is forecasted.
The predictive schedule is presented in Fig. 7.

Ma
M4
M3
M2
M

[ )2

Fig. 7. The Gantt chart for the predictive schetulproblem

The rule FPR is in force if ETFR rule cannot bedubecause no machine is idle or
because of the production route constrains. Furts@archers should be given to minimize
Chax Criterion.
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5. SUMMARY

In the paper the problem to generate a workableaqgtive baseline schedule under
production constraints and unexpected event oaocereconditions is considered. The
proactive baseline schedule protects against pat&il occurrences that may appear during
the schedule execution. The time of machine brealsnsearched and the information is
used to generate the robust schedule. In the phpenethod of data acquisition basing on
probability theory is proposed. A numerical examplie building a hypothesis H:{the
cumulative distribution function of the failure tams the normal distribution}, verification
of the hypothesis, and predictive scheduling is@néed.

The paper is proposition of improving simulationstgyns such as the Enterprise
Dynamics or Taylor and scheduling systems suchremvedge based Rescheduling System
or Multi Objective Immune Scheduling Algorithm.

In the future work, a model of machine failuresiveké considered in the successive
failure-free times with Weibull distributions andlibwed by exponentially distributed times
of repairs. The goal is to work out the predictbaheduling system reflecting a production
system and nature of disturbances able to estinmkieown parameters of the system.
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