PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoluminescence and Raman spectroscopies as an optical approach of stress determining in MOVPE grown quantum cascade laser structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented work, an optical approach of stress determining in metalorganic vapor phase epitaxy (MOVPE) grown quantum cascade laser (QCL) structures was reported. In the case of such sophisticated structures containing hundreds of thin layers, it is important to minimize the stress generated in the QCL core. Techniques enabling determination of stress in such thin layers as those described in the article are photoluminescence and Raman spectroscopies. Based on Raman shift or changes in photoluminescence signal, it is possible to analyze stress occurring in the structure.
Czasopismo
Rocznik
Strony
289--299
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] BADURA M., BIELAK K., ŚCIANA B., RADZIEWICZ D., PUCICKI D., DAWIDOWSKI W., ŻELAZNA K., KUDRAWIEC R., TŁACZAŁA M., Technology and properties of low-pressure metalorganic vapour phase epitaxy grown InGaAs/AlInAs superlattice for quantum cascade laser applications, OpticaApplicata 46(2), 2016, pp. 241–248, DOI:10.5277/oa160208.
  • [2] KRYSA A.B., ROBERTS J.S., GREEN R.P., WILSON L.R., PAGE H., GARCIA M., COCKBURN J.W., MOVPE-grown quantum cascade lasers operating at ~9 μm wavelength, Journal of Crystal Growth 272(1–4), 2004, pp. 682–685, DOI:10.1016/j.jcrysgro.2004.08.066.
  • [3] GUTOWSKI P., SANKOWSKA I., KARBOWNIK P., PIERŚCIŃSKA D., SEREBRENNIKOVA O., MORAWIEC M., PRUSZYŃSKA-KARBOWNIK E., GOŁASZEWSKA-MALEC K., PIERŚCIŃSKI K., MUSZALSKI J., BUGAJSKI M., MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers, Journal of Crystal Growth 466, 2017, pp. 22–29, DOI:10.1016/j.jcrysgro.2017.02.031.
  • [4] HUANG Y., RYOU J. H., DUPUIS R. D., PFLÜGL C., CAPASSO F., SUN K., FISCHER A. M., PONCE F., Optimization of growth conditions for InGaAs/InAlAs/InP quantum cascade lasers by metalorganic chemical vapor deposition, Journal of Crystal Growth 316(1), 2011, pp. 75–80, DOI:10.1016/j.jcrysgro.2010.12.028.
  • [5] BOUR D., TROCCOLI M., CAPASSO F., CORZINE S., TANDON A., MARS D., HÖFLER G., Metalorganic vapor-phase epitaxy of room-temperature, low-threshold InGaAs/AlInAs quantum cascade lasers, Journal of Crystal Growth 272(1–4), 2004, pp. 526–530, DOI:10.1016/j.jcrysgro.2004.08.048.
  • [6] WANG C.A., HUANG R.K., GOYAL A., DONNELLY J.P., CALAWA D.R., CANN S.G., O’DONNELL F., PLANT J.J., MISSAGGIA L.J., TURNER G.W., SANCHEZ-RUBIO A., OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers, Journal of Crystal Growth 310(23), 2008, pp. 5191–5197, DOI:10.1016/j.jcrysgro.2008.07.100.
  • [7] MATRULLO N., CONSTANT M., SAGON G., FAUQUEMBERGUE R., LEROY A., Raman characterization of an operating InAlAs–InGaAs–InP high electronic mobility transistor, Journal of Raman Spectroscopy 26(2), 1995, pp. 167–172, DOI:10.1002/jrs.1250260209.
  • [8] MOORADIAN A., WRIGHT G.B., First order Raman effect in III–V compounds, Solid State Communications 4(9), 1966, pp. 431–434, DOI:10.1016/0038-1098(66)90321-8.
  • [9] CERDEIRA F., BUCHENAUER C. J., POLLAK F. H., CARDONA M., Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors, Physical Review B 5(2), 1972, pp. 580–593, DOI:10.1103/PhysRevB.5.580.
  • [10] ATTOLINI G., FRANCESIO L., FRANZOSI P., PELOSI C., GENNARI S., LOTTICI P.P., Raman scattering study of residual strain in GaAs/InP heterostructures, Journal of Applied Physics 75(8), 1994, pp. 4156–4169, DOI:10.1063/1.355997.
  • [11] ADACHI S., III-V Ternary and Quaternary Compounds, [In] Springer Handbook of Electronic and Photonic Materials, [Eds.] S. Kasap, P. Capper, 2nd Ed., Springer, Cham, 2017, pp. 725–741, DOI:10.1007/978-3-319-48933-9_30.
  • [12] AOKI K., ANASTASSAKIS E., CARDONA M., Dependence of Raman frequencies and scattering intensities on pressure in GaSb, InAs, and InSb semiconductors, Physical Review B 30(2), 1984, pp. 681–687, DOI:10.1103/PhysRevB.30.681.
  • [13] LOCKWOOD D.J., YU GUOLIN, ROWELL N.L., Optical phonon frequencies and damping in AlAs, GaP,GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy, Solid State Communications 136(7), 2005, pp. 404–409, DOI:10.1016/j.ssc.2005.08.030.
  • [14] WANG Y., SHENG X., GUO Q., LI X., WANG S., FU G., MAZUR Y.I., MAIDANIUK Y., WARE M.E, SALAMOG.J, LIANG B., HUFFAKER D.L., Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs/InP single quantum well with different thickness, Nanoscale Research Letters 12, 2017, article 229, DOI:10.1186/s11671-017-1998-8.
  • [15] POÇAS L.C., DUARTE J.L., LOPES E.M., DIAS I.F.L., LAURETO E., CÉSAR D.F., HARMAND J.C., The effect of potential fluctuations on the optical properties of InGaAs∕InGaAlAs single and coupled double quantum wells, Journal of Applied Physics 100(5), 2006, article 053519, DOI:10.1063/1.2260826.
  • [16] GFROERER T.H., Photoluminescence in analysis of surfaces and interfaces, [In] Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Wiley, Chichester, 2006, pp. 9209–9231, DOI:10.1002/9780470027318.a2510.
  • [17] HU Y., WANG L., LIU F., ZHANG J., LIU J., WANG Z., Micro-Raman study on chirped InGaAs–InAlAs superlattices, Physica Status Solidi A 210(11), 2013, pp. 2364–2368, DOI:10.1002/pssa.201330002.
  • [18] MOZUME T., KASAI J., Micro-Raman scattering study of InGaAs/(AlAs)/AlAsSb quantum wells grown by molecular beam epitaxy, Journal of Crystal Growth 278(1–4), 2005, pp. 178–182, DOI:10.1016/j.jcrysgro.2004.12.072.
  • [19] MATHONNIÈRE S., SEMTSIV M.P., MASSELINK W.T., Thermal annealing of lattice-matched InGaAs/InAlAs quantum-cascade lasers, Journal of Crystal Growth 477, 2017, pp. 258–261, DOI:10.1016/j.jcrysgro.2017.01.029.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9869efbc-b3cd-4f38-837d-963606a8cc80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.