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Abstract. Changes in the system flow of a fluid in a pipe often cause sudden pressure 

changes and give rise to so-called transient load flows. So, the study of the phenomenon of 

transient load flows aims to determine whether the pressure in the whole of a system is 

within the prescribed limits, following a perturbation of the flow. By defining the scope of 

a water hammer study, an examination is made of variations in velocity or flow and 

pressure resulting from poor operation of the hydraulic system, its normal operation and 

emergency operations. This paper introduces a numerical modeling of the phenomenon of 

transient flows in load pipes with variable geometries which presents a study of the average 

pressure and the average velocity of the transient flow in the pipe with quasi-steady term 

friction. The characteristic method is used to solve the governing equations of “Saint- 

-Venant”. Thanks to the AFT Impulse industrial program, we have obtained very interest-

ing and very practical numerical results to describe the phenomenon of transient flows 

in variable load pipes.  
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1. Introduction  

The transitional regime in hydraulic installations is a very complex phenome-

non. It represents a permanent danger for installations and can occur at any time 

due to the various manipulations of the elements of the network.  

The transient regime in the closed pipes is characterized by variations of the 

pressures, which are often very high or very low. These variations are accompanied 

by the phenomenon of propagation of the pressure waves that traverse the network 

for a certain time until their damping and the restoration of the initial regime [1]. 

This regime is the source of several damages (deterioration of the pipes) which 

incur often unforseen equipment and maintenance costs [2].  
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In this paper we will present a study of the average pressure and the average 

velocity of the transient flow in the pipe with quasi-steady term friction. Our objec-

tive in this contribution is to treat the most complex case, which means the theory 

of the hydraulic shock caused by the water hammer in the load pipes with variable 

geometry, going by way of the theoretical aspect; equations (mass conservation 

equation and momentum conservation equation).  

 From these equations, each method uses different simplifying hypotheses 

and/or resolving procedures, such as analytical, graphic or numerical methods [3]. 

But in view of the complexity of the phenomenon, there really are no complete 

analytical solutions to solve the problem, as in the case of Allievi’s method [4, 5], 

which gives us a global solution to the problem but does not take into account loss 

of loads which affects the extent of the phenomenon and the approximate graphic 

methods (such as the Schnyder-Bergeron method [6, 7]) that are not really effective 

in solving complex cases such as a pipe with several branches, or a pipe with vari-

able characteristics, such as variations of the section, etc. So the numerical methods 

have taken over to allow us to quantify this type of phenomenon.  

The objectives of this paper are on the one hand to study the causes of wave 

propagation, meaning a sudden stop of the water supply of the gravity loaded 

pipes. On the other hand we tried to formulate these phenomena as equations by 

taking essentials points the variations of the sections of the pipe and the closing 

of the valves. Rather we used the numerical method of the characteristics to solve 

the systems of equations representing transient flow. As tools of simulation we 

used AFT impulse software.  

2. Basic assumptions and equations  

2.1. Assumptions  

The assumptions in the development of water hammer equations are [8]:  

– flow in the pipeline is considered to be one - dimensional with the average 

velocity and the average pressure assumed to be uniform at a chosen section,  

– the pipe is full and remains full during the transient,  

– there is no column separation during the transient i.e. pressure is greater than 

the liquid vapor pressure,  

– the pipe wall and the liquid behave linearly elastically,  

– unsteady friction losses are approximated as steady state losses.  

2.2. Basic wave propagation equations in pipes  

The equations allow us to study all the transient phenomena that we meet in 

monophasic flow under pressure established by Saint-Venant are [9]:  
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Dynamic equation  
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The friction factor f in equation (2) is expressed for the turbulent flow, from 

Colbrook formula (3)  
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And the velocity of wave pressure is expressed by the relation (4)  
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3. Method of characteristics  

Based on the work of [10] and [11], we found that for a partial differential 

equation (PDE) of the first order, the characteristic method consists in searching 

for curves (called “characteristic lines” or simply “Characteristics”) along which 

the EDP is reduced to a simple ordinary differential equation (EDO). The resolu-

tion of the EDO along a characteristic makes it possible to find the solution of 

the original problem.  

By multiplying equation (2) by an unknown constant λ, by adding it to equation 

(1), and rearranging and taking the total derivative, we obtain the following equa-

tions (5) and (7):  

 0
2

=++ UU
D

f

dt

dH

C

g

dt

dU
 (5)  

only when  

 C
dt

dX
+=  (6)  

While  

 0
2

=+− UU
D

f

dt

dH

C

g

dt

dU
 (7)  

only when  

 C
dt

dX
−=  (8)  



S. Ramoul, A Fourar, F. Massouh 70 

To understand the meaning of these four equations, it is necessary to examine 

them using the figure below (Fig. 1) [2].  

 

 

Fig. 1. Characteristic lines 

The resolution of equations (5) and (7) by the characteristic method consists 

in determining the head H and the average velocity U at the point P knowing 

the initial values at the points R and S. Let UP and HP be the parameters searched 

at point P. By multiplying equation (5) by dt and integrating, we obtain:  
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Assuming that velocity is constant at points R and P.  

According to the degree of accuracy required, other approximations may be 

made, but they involve the unknown UP, hence the necessity of an iterative proce-

dure to evaluate the term as well as possible.  

Thus the equation becomes:  
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By the same approach, equation (7) can also be written:  
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In these relations, tp – 0 equal to ∆t, and when these equations are multiplied by 

∆t they become:  
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Each of the characteristic equations can be integrated if: 

 tCX ∆=∆  (16)  

4. Boundary conditions  

The H and U values on the pipe ends are determined using boundary conditions. 

These conditions are:  

4.1. Condition at the tank boundary  

When the pipe outlet from a tank, the value of H remains constant for all times. 

In this case, it is assumed that:  
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This equation is solved simultaneously with the characteristic curve W
–
. We use 

equation (15) to obtain an expression for the velocity  
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4.2. Condition at the velocity boundary  

If the velocity were known at the downstream end of a pipe, an expression of H 

is easily found. For example, suppose a valve is closed in a way that caused the 

speed to decrease linearly from U
0
 to zero in T seconds. The Up equation would be:  
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The equation for HP would be deduced from equation (14)  
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For any value of UPN+1 including zero.  

5. Digital Data and results  

5.1. Study model  

In our work, we will base the comparison on the study models depicted by 

Figures 2 and 3. Rather Table 1 presents the parameters of the pipes and the fluid 

of our models.  

 

         

Fig. 2. Model 1, pipe of constant diameter Fig. 3. Model 2, pipe of variable diameter  

Table 1 
Parameters of the pipes and the fluid 

Steel 
pipe 

L 
[m] 

D 
[mm] 

e 
[mm] 

k 
[mm] 

Ep 

[MPa] 
El 

[MPa] 

Tanks 

[H
1
] [H

2
] [H

3
] 

Case 1 

L
1 

400 202.71 3.22 

0.0457 2·105 2053 161  161 20 

L
2 

400 202.71 3.22 

L
3 

1990 202.71 3.22 

L
4 

100 202.71 3.22 

Case 2 

L
1 

400 202.71 3.22 

L
2 

400 202.71 3.22 

L
3 

800 202.71 3.22 

L
4 

400 154.05  2.80 

L
5 

790 202.71  3.22 

L
6 

100 202.71  3.22 

 

Pipe 6 

Tank 1 Tank 2

Pipe 1 Pipe 2 

Pipe 3

Pipe 4

Pipe 5

Valve

Tank 3 

Tank 1 

Tank 3 

Tank 2

Pipe 1 Pipe 2 

Pipe 3

Valve

Pipe 4
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5.2. Slow closing  

5.2.1. Case 1: slow closing of the valve with Constant diameter  
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Fig. 4. Variation of head during time 
at the mid point of pipe 1 

Fig. 5. Variation of velocity during time 
at the mid-point of the pipe 1 
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Fig. 6. Variation of head during time 
in pipe 3 at the point of intersection 

(connection) 

Fig. 7. Variation of velocity during time 
in pipe 3 at the point of intersection 

(connection) 
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Fig. 8. Variation of head during time 
in pipe 3 at the mid-point 

Fig. 9. Variation of velocity during time 
in pipe 3 at the mid-point 

C 3, Station 20
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Fig. 10. Variation of head during time in pipe 3 
to the valve 

Fig. 11. Variation of velocity during time 
in pipe 3 to the valve 
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5.2.2. Case 2: slow closing of the valve with variable diameter 
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Fig. 12. Variation of height during time 

in pipe 1 at the mid-point 
Fig. 13. Variation of velocity during time 

in pipe 1 at the mid-point 
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Fig. 14. Variation of head during time in pipe 3 

at the point of intersection (connection) 
Fig. 15. Variation of velocity during time in 

pipe 3 at the point of intersection (connection) 
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Fig. 16. Variation of head during time 

in pipe 4 at the mid-point 
Fig. 17. Variation of velocity during time 

in pipe 4 at the mid-point 

C 5, Station 8
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Fig. 18. Variation head during time in pipe 5 

to the valve 
Fig. 19. Variation of velocity during time 

in pipe 5 to the valve 

5.2.3. Comparison of Case 1 and Case 2  

Based on the results presented by Figures 4 to 19, we found that at the two pipes 
C1 and C2: The amplitude of the variations in the piezometric head increases 
before closing the valve but with poor harmony, and it decreases until the closing 
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of the valve to reach the initial values of the piezometric head in the case of rest but 
with very low oscillations. The attenuation of the fluctuations of the piezometric 
head is weak and slower each time we get closer to the tank, where the rate of fluc-
tuations is almost identical in both cases. At C3 pipe at the branch: The amplitude 
of the variations in the piezometric head is greater than that of the first two pipes, 
and they remain in an oscillatory state with amplitudes more or less important until 
the end of the simulation. With regard to velocity; the value of the latter in the pipe 
C3 is twice that of the pipes C1 and C2, which explains the law of continuity. 
At pipe C4: The amplitude of the variations in the piezometric head is greater 
than that of the previous pipes. It is noted that the head losses are greater at the end 
of the pipe. At the valve: The amplitude of the fluctuations of the piezometric head 
increases at the midpoint and becomes maximum at the valve. The attenuations 
of the head fluctuations are less rapid at the mid-point and become increasingly 
slow every time one approaches the valve.  

5.3. Rapid closing  

5.3.1. Case 3: rapid closing with Constant diameter  
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Fig. 20. Variation of head during time 

at the mid point of pipe 1 
Fig. 21. Variation of velocity during time 

at the mid-point of the pipe 1 
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Fig. 22. Variation of head during time in pipe 3 

at the point of intersection (connection) 
Fig. 23. Variation of velocity during time in 

pipe 3 at the point of intersection (connection) 
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Fig. 24. Variation of head during time 

in pipe 3 at mid-point 
Fig. 25. Variation of velocity during time 

in pipe 3 at the mid-point 
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C 3, Station 20

H
a
u
te
u
r 
(m

)

Temps (s)

-100

0

100

200

300

400

0 10 20 30 40 50 60

 

C 3, Station 20

V
it
e
s
s
e
 (
m
/s
)

Temps (s)

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60

 
Fig. 26. Variation of head during time 

in pipe 3 to the valve 
Fig. 27. Variation of velocity during time 

in pipe 3 to the valve 

5.3.2. Case 4: rapid closing with variable diameter  
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Fig. 28. Variation of head during time 

in pipe 1 at the midpoint 
Fig. 29. Variation of velocity during time 

in pipe 1 at the mid-point 
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Fig. 30. Variation of head during time in pipe 3 

at the point of intersection (connection) 
Fig. 31. Variation of velocity during time in 

pipe 3 at the point of intersection (connection) 
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Fig. 32. Variation of head during time 

in pipe 4 at the mid-point 
Fig. 33. Variation of velocity during time 

in pipe 4 at the mid-point 
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Fig. 34. Variation of head during time 

in pipe 5 to the valve 
Fig. 35. Variation of velocity during time 

in pipe 5 to the valve 
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5.3.3. Comparison of Case 3 and Case 4  

Based on the results presented by Figures 20 to 35, we found that at the C1 and 

C2 pipes: the amplitudes of the fluctuations of the piezometric head are faster and 

more pronounced in the point of intersection (connection) with maximum values 

at the beginning of the simulation and decreasing progressively over time. 

The attenuation of the fluctuations of the piezometric head is faster every time that 

one moves away from the tank, where the rate of fluctuations is almost identical 

in both cases.  

At the level of the pipe C3 connection: It is noted that the fluctuations of the 

head are very accentuated with oscillations greater than the two pipes and which 

decrease more in time. With regard to velocity; its value in pipe C3 is twice greater 

that of pipes C1 and C2, which explains the law of continuity. At pipe C4: The am-

plitude of the variations of the piezometric head is greater at the mid-point and be-

comes maximum at the change of section, and it remains in an oscillatory state 

with amplitudes more or less important until the end of the simulation. It will be 

noted that the velocity value in pipe C4 is very important as that of pipe C3. At the 

valve: The amplitude of the variations in the piezometric head is greater in case 4 

at the midpoint than it is in case3 where the pipe is constant and becomes maximum 

at the valve. With regard to velocity; the amplitude of the variations in velocity 

decreases from the tank to the valve. The velocity fluctuations remain in an oscilla-

tory state with more or less significant amplitudes until the end of the simulation. 

Velocity fluctuations are more pronounced at the level of the rapid closure.  

6. Conclusions  

We have proved in this paper that water hammer is a phenomenon that causes 

very detrimental effects on hydraulic pipes, such as fatigue, implosion and even 

breakage. It is especially true in the case of pipes with variable characteristics.  

It is for this reason that our study, which takes into account the variations of the 

sections, has been directly concerned with the effect of the change of section on the 

evaluation of the phenomenon of hydraulic shock. Here, we should note that we 

have presented a deep study of the average pressure and the average velocity of the 

transient flow in the pipe with quasi-steady term friction. We have also based our 

work on the hyperbolic basic equations established by Saint-Venant; in this case 

the continuity equation and the dynamic equation to evaluate these transient 

phenomena. Also we used the method of characteristics to solve the systems of 

equations representing transient flow, we based these solution on the simplifying 

hypotheses mentioned above. In this work, which aims to approach the problem 

numerically, we used the AFT Impulse industrial program for the simulation of 

transient phenomena in complex hydraulic plant models and loaded hydraulic 

systems. Graphical results obtained from the variation of the piezometric head and 

the flow velocity over time, results in the necessity to always increase the time of 
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manipulation and operation of the valves in order to decrease the amplitude varia-

tions in the piezometric head and the flow velocity and to avoid the change of the 

sections of the pipes and especially to calculate them so that they are resistant to 

these phenomena of overpressure and depression and in particular they must be 

resistant to the pressure where the vacuum is sufficient to create the cavitation. 

Moreover, our study was based on the case of one-dimensional flow without taking 

into account external changes such as changes in water temperature, density, etc.  

 
Notations g  Gravity acceleration [ms

–2
] 

U Average velocity [ms
–1
] C  Velocity of wave pressure [ms

–1
] 

H The piezometric head [m] f  Factor of friction 

D Inner pipe diameter [m] x  Linear dimension [m] 

T Time [s] ρ  Fluid density [kg m
–3
] 

El Bulk modulus of the liquid [Pa] e  Pipe-wall thickness [m] 

Ep Young’s modulus [Pa] µ  Dynamic viscosity [kg m
–1
s
–1
] 

L Pipe length [m] k  Roughness Coefficient 
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