Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work is to study the influence of chamfered perforation and chamfering on the heave and pitch motion of a single floating wind power platform with an anti-heave device. Firstly, the hydrodynamic performance of a single floating body with different chamfers, or without perforation, is calculated and analysed. Secondly, the motion of a model without perforation and with 35° chamfered perforation is captured and studied in a towing tank. The results show that when the wave height is large and the period is small, the perforated device has a certain effect. When the wave height and period are small, the pitch suppression effect of chamfered perforation is more obvious than that of non-chamfered perforation. When the period and wave height are large, the heave suppression effect of non-chamfered perforation is better than that of chamfered perforation. In experimental research, the perforated floating body has a certain effect on restraining the heave and pitch of a floating body under most working conditions, and the effect of restraining the pitch is obviously better than that of restraining the heave.
Czasopismo
Rocznik
Tom
Strony
43--53
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, China
- Marine Design and Research Institute of China, China
- School of Naval Architecture and Maritime, Zhejiang Ocean University, China
autor
- Marine Design and Research Institute of China, China
autor
- School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, China
autor
- School of Naval Architecture and Maritime, Zhejiang Ocean University, China
autor
- School of Naval Architecture and Maritime, Zhejiang Ocean University, China
autor
- School of Naval Architecture and Maritime, Zhejiang Ocean University, China
Bibliografia
- 1. E. Ciba, P. Dymarski and M. Grygorowicz, “Heave Plates with Holes for Floating Offshore Wind Turbines”, Polish Marit. Res., vol. 29, no. 1, 2022. doi: 10.2478/pomr-2022-0003.
- 2. H. Zhiqian, D. Qinwei, and L. Chun, “Research on Heave Motion Inhibition for the Semi-submersible Platform of Floating Wind Turbines with New Heave Plates”, Journal of Power Engineering, vol. 39, no. 5, 2019, pp. 402-408.
- 3. Z. Ye, J. Zhang, G. Zhou, C. Li, “Research on hydrodynamic characteristics of the floating wind turbine with heave plate”, Acta Energiae Solaris Sinica, vol. 40, no. 1, 2019. doi: 10.19912/j.0254-0096.2019.01.033. doi: 10.19912/j.0254-0096.2019.01.033.
- 4. S. An and O. Faltinsen, “An experimental and numerical study of heave added mass and damping of horizontally submerged and perforated rectangular plates”, Journal of Fluids and Structures, vol. 39, 2013, pp.87-101. doi: 10.1016/j. jfluidstructs.2013.03.004.
- 5. S. Holmes, S. Bhat, P. Beynet, A. Sablok, and I. Prislin, “Heave Plate Design with Computational Fluid Dynamics”, JOMAE, vol. 123, no. 1,2001. doi: 10.1115/1.1337096.
- 6. B. Devolder, P. Troch, P. Rauwoens, “Accelerated numerical simulations of a heaving floating body by coupling a motion solver with a two-phase fluid solver”, Computers and Mathematics with Applications, vol. 77, 2019, pp.1605- 1625. doi: 10.1016/j.camwa.2018.08.064.
- 7. L. Zhu, H-C. Lim, “Hydrodynamic characteristics of a separated heave plate mounted at a vertical circular cylinder”, Ocean Engineering, vol. 131, 2017, pp.213-223. doi: 10.1016/j.oceaneng.2017.01.007.
- 8. H. Gu, P. Stansby, T. Stallard, E. Carpintero Moreno, “Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water”, Journal of Fluids and Structures, 82, 2018, pp.343-356. doi: 10.1016/j.jfluidstructs.2018.06.012.
- 9. A. Bezunartea-Barrio, S. Fernandez-Ruano, A. MaronLoureiro, E. Molinelli-Fernandez, F. Moreno-Buron, J. Oria-Escudero, J. Rios-Tubio, C. Soriano-Gomez, A. ValeaPeces, C. Lopez-Pavon, A. Souto-Iglesias, “Scale effects on heave plates for semi-submersible floating offshore wind turbines: case study with a solid plain plate”, Journal of Offshore Mechanics and Arctic Engineering, vol. 142, no. 3, 2020. doi:10.1115/1.4045374.
- 10. A.J. Dunbar, B.A. Craven, E.G. Paterson, “Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms”, Ocean Engineering, vol. 110, 2015, pp.98-105. doi: 10.1016/j. oceaneng.2015.08.066.
- 11. L.H.S.d Carmo, P.C.d Mello, E.B. Malta, G.R. Franzini, A.N. Simos, R.T. Gonc¸ H. Suzuki, “Analysis of a FOWT Model in Bichromatic Waves: An Investigation on the Effect of Combined Wave-Frequency and Slow Motions on the Calibration of Drag and Inertial Force Coefficients”, ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. doi: 10.1115/OMAE2020-18239 POLISH MARITIME RESEARCH, No 1/2023 53.
- 12. E. Homayoun, H. Ghassemi, H. Ghafari, “Power Performance of the Combined Monopile Wind Turbine and Floating Buoy with Heave-Type Wave Energy Converter”, Polish Maritime Research, vol. 26, no. 3, 2019, pp. 107-114. doi:10.2478/pomr-2019-0051.
- 13. E. Ciba, “Heave Motion of a vertical Cylinder with Heave Plates”, Polish Maritime Research, vol. 28, no. 1, 2021, pp. 42-47. doi: 10.2478/pomr-2021-0004.
- 14. P. Dymarski, C. Dymarski, E. Ciba, “Stability Analysis of the Floating Offshore Wind Turbine Support Structure of Cell Spar Type During Its Installation”, Polish Maritime Research, vol. 24, no. 4, 2021, pp. 109-116. doi: 10.2478/ pomr-2019-0072.
- 15. E. Ciba, P. Dymarski, M. Grygorowicz, “Analysis of The Hydrodynamic Properties of the 3-Column Spar Platform for Offshore Wind Turbines”, Polish Maritime Research, vol. 29, no. 2, 2022, pp. 35-42. doi: 10.2478/pomr-2022-0015.
- 16. W. Wang, C. Zhao, P. Jia, Z. Lu, and Y. Xie, “Numerical simulation and experimental study on perforated heave plate of a DeepCwind floating wind turbine platform”, Ships and Offshore Structures, vol. 18, no. 3, 2022, pp. 438-449. doi: 10.1080/17445302.2022.2062157.
- 17. W. Wang, S. Fan, Y. You, C. Zhao, L. Xu, G. Wang. “Numerical and Experimental Study on an Anti-Oscillation Device for the DeepCwind Floating Semi-Submersible Turbine Platform”& Energies, vol. 16, no. 3, 2023, 1034. doi: 10.3390/en16031034.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-985d6029-3ff9-4205-b444-92c622ace3de