PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the influence of chamfer perforation on heave and pitch of a single floating platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to study the influence of chamfered perforation and chamfering on the heave and pitch motion of a single floating wind power platform with an anti-heave device. Firstly, the hydrodynamic performance of a single floating body with different chamfers, or without perforation, is calculated and analysed. Secondly, the motion of a model without perforation and with 35° chamfered perforation is captured and studied in a towing tank. The results show that when the wave height is large and the period is small, the perforated device has a certain effect. When the wave height and period are small, the pitch suppression effect of chamfered perforation is more obvious than that of non-chamfered perforation. When the period and wave height are large, the heave suppression effect of non-chamfered perforation is better than that of chamfered perforation. In experimental research, the perforated floating body has a certain effect on restraining the heave and pitch of a floating body under most working conditions, and the effect of restraining the pitch is obviously better than that of restraining the heave.
Rocznik
Tom
Strony
43--53
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, China
  • Marine Design and Research Institute of China, China
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, China
autor
  • Marine Design and Research Institute of China, China
autor
  • School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, China
autor
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, China
Bibliografia
  • 1. E. Ciba, P. Dymarski and M. Grygorowicz, “Heave Plates with Holes for Floating Offshore Wind Turbines”, Polish Marit. Res., vol. 29, no. 1, 2022. doi: 10.2478/pomr-2022-0003.
  • 2. H. Zhiqian, D. Qinwei, and L. Chun, “Research on Heave Motion Inhibition for the Semi-submersible Platform of Floating Wind Turbines with New Heave Plates”, Journal of Power Engineering, vol. 39, no. 5, 2019, pp. 402-408.
  • 3. Z. Ye, J. Zhang, G. Zhou, C. Li, “Research on hydrodynamic characteristics of the floating wind turbine with heave plate”, Acta Energiae Solaris Sinica, vol. 40, no. 1, 2019. doi: 10.19912/j.0254-0096.2019.01.033. doi: 10.19912/j.0254-0096.2019.01.033.
  • 4. S. An and O. Faltinsen, “An experimental and numerical study of heave added mass and damping of horizontally submerged and perforated rectangular plates”, Journal of Fluids and Structures, vol. 39, 2013, pp.87-101. doi: 10.1016/j. jfluidstructs.2013.03.004.
  • 5. S. Holmes, S. Bhat, P. Beynet, A. Sablok, and I. Prislin, “Heave Plate Design with Computational Fluid Dynamics”, JOMAE, vol. 123, no. 1,2001. doi: 10.1115/1.1337096.
  • 6. B. Devolder, P. Troch, P. Rauwoens, “Accelerated numerical simulations of a heaving floating body by coupling a motion solver with a two-phase fluid solver”, Computers and Mathematics with Applications, vol. 77, 2019, pp.1605- 1625. doi: 10.1016/j.camwa.2018.08.064.
  • 7. L. Zhu, H-C. Lim, “Hydrodynamic characteristics of a separated heave plate mounted at a vertical circular cylinder”, Ocean Engineering, vol. 131, 2017, pp.213-223. doi: 10.1016/j.oceaneng.2017.01.007.
  • 8. H. Gu, P. Stansby, T. Stallard, E. Carpintero Moreno, “Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water”, Journal of Fluids and Structures, 82, 2018, pp.343-356. doi: 10.1016/j.jfluidstructs.2018.06.012.
  • 9. A. Bezunartea-Barrio, S. Fernandez-Ruano, A. MaronLoureiro, E. Molinelli-Fernandez, F. Moreno-Buron, J. Oria-Escudero, J. Rios-Tubio, C. Soriano-Gomez, A. ValeaPeces, C. Lopez-Pavon, A. Souto-Iglesias, “Scale effects on heave plates for semi-submersible floating offshore wind turbines: case study with a solid plain plate”, Journal of Offshore Mechanics and Arctic Engineering, vol. 142, no. 3, 2020. doi:10.1115/1.4045374.
  • 10. A.J. Dunbar, B.A. Craven, E.G. Paterson, “Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms”, Ocean Engineering, vol. 110, 2015, pp.98-105. doi: 10.1016/j. oceaneng.2015.08.066.
  • 11. L.H.S.d Carmo, P.C.d Mello, E.B. Malta, G.R. Franzini, A.N. Simos, R.T. Gonc¸ H. Suzuki, “Analysis of a FOWT Model in Bichromatic Waves: An Investigation on the Effect of Combined Wave-Frequency and Slow Motions on the Calibration of Drag and Inertial Force Coefficients”, ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. doi: 10.1115/OMAE2020-18239 POLISH MARITIME RESEARCH, No 1/2023 53.
  • 12. E. Homayoun, H. Ghassemi, H. Ghafari, “Power Performance of the Combined Monopile Wind Turbine and Floating Buoy with Heave-Type Wave Energy Converter”, Polish Maritime Research, vol. 26, no. 3, 2019, pp. 107-114. doi:10.2478/pomr-2019-0051.
  • 13. E. Ciba, “Heave Motion of a vertical Cylinder with Heave Plates”, Polish Maritime Research, vol. 28, no. 1, 2021, pp. 42-47. doi: 10.2478/pomr-2021-0004.
  • 14. P. Dymarski, C. Dymarski, E. Ciba, “Stability Analysis of the Floating Offshore Wind Turbine Support Structure of Cell Spar Type During Its Installation”, Polish Maritime Research, vol. 24, no. 4, 2021, pp. 109-116. doi: 10.2478/ pomr-2019-0072.
  • 15. E. Ciba, P. Dymarski, M. Grygorowicz, “Analysis of The Hydrodynamic Properties of the 3-Column Spar Platform for Offshore Wind Turbines”, Polish Maritime Research, vol. 29, no. 2, 2022, pp. 35-42. doi: 10.2478/pomr-2022-0015.
  • 16. W. Wang, C. Zhao, P. Jia, Z. Lu, and Y. Xie, “Numerical simulation and experimental study on perforated heave plate of a DeepCwind floating wind turbine platform”, Ships and Offshore Structures, vol. 18, no. 3, 2022, pp. 438-449. doi: 10.1080/17445302.2022.2062157.
  • 17. W. Wang, S. Fan, Y. You, C. Zhao, L. Xu, G. Wang. “Numerical and Experimental Study on an Anti-Oscillation Device for the DeepCwind Floating Semi-Submersible Turbine Platform”& Energies, vol. 16, no. 3, 2023, 1034. doi: 10.3390/en16031034.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-985d6029-3ff9-4205-b444-92c622ace3de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.