PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Delamination analysis in single-point incremental forming of steel/steel bi-layer sheet metal

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Layered metallic materials (LMMs) offer superior properties in comparison to their counterpart monolithic sheets. Single-point incremental forming (SPIF) has emerged as an economical solution to produce LMM parts. However, delamination can limit the formability of such parts. In this study, the delamination analysis during SPIF of layered sheets was performed. Steel/steel bi-layer sheets were fabricated by roll bonding. These sheets were produced at thickness reduction ratios of 47%, 58% and 70%. The bond strength and fracture toughness in mode I and mode II were determined by T-peel and tensile shear tests, respectively. When the thickness reduction ratio was increased from 47 to 70%, an increase in bond strength was observed with 572% increase in mode I and 15.6% in mode II, respectively. On the other hand, with the same percent increase in thickness reduction, the critical strain energy release showed an increase of 3992% in mode I and 20% decrease in mode II. Surface-based cohesive zone model was used to define the interface between layers during numerical simulation of SPIF for delamination analysis. To validate the numerical results, SPIF of given bi-layer sheet was performed experimentally and a good agreement between the numerical and experimental results was observed.
Rocznik
Strony
124--137
Opis fizyczny
Bibliogr. 25 poz., fot., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
autor
  • Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
autor
  • Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
autor
  • Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
Bibliografia
  • [1] Wong CC, Danno A, Huang XH, Tong KK. A study into a cost effective roll bonding process for clad metals. SIMTech Tech Rep. 2008;9:50–5.
  • [2] Yin FX, Li L, Tanaka Y, Kishimoto S, Nagai K. Hot rolling bonded multilayered composite steels and varied tensile deformation behaviour. Mater Sci Technol. 2012;28:783–7. https ://doi.org/10.1179/17432 84711 Y.00000 00116 .
  • [3] Al-Ghamdi KA, Hussain G. SPIF of Cu/steel clad sheet: annealing effect on bond force and formability. Mater. Manuf. Process. 2016;31:758–63. https ://doi.org/10.1080/10426 914.2015.1048363.
  • [4] Gupta P, Jeswiet J. Observations on heat generated in single point incremental forming. Procedia Eng. 2017. https ://doi.org/10.1016/j.proen g.2017.04.060.
  • [5] Al-Ghamdi KA, Hussain G. Parameter-formability relationship in ISF of tri-layered Cu–Steel–Cu composite sheet metal: response surface and microscopic analyses. Int. J. Precis. Eng. Manuf. 2016;17:1633–42. https ://doi.org/10.1007/s1254 1-016-0189-3.
  • [6] Al-Ghamdi KA, Hussain G. On the comparison of formability of roll-bonded steel-Cu composite sheet metal in incremental forming and stamping processes. Int J Adv Manuf Technol. 2016;87:267–78. https ://doi.org/10.1007/s0017 0-016-8488-5.
  • [7] Gheysarian A, Honarpisheh M. An Experimental Study on the process parameters of Incremental Forming of Explosively-Welded Al/Cu Bimetal. J. Comput. Appl. Res. Mech. Eng. 2017;7:73–83. https ://doi.org/10.22061 /JCARM E.2017.646.
  • [8] Sakhtemanian MR, Amini S, Honarpisheh M. Simulation and investigation of mechanical and geometrical properties of St/CPTitanium bimetal sheet during the single point incremental forming process. IJMF Iran. J. Mater. Form. 2018;5:1–18. https ://doi.org/10.22099 /IJMF.2017.26024 .1085.
  • [9] Ashouri R, Shahrajabian H. Experimental investigation of incremental forming process of bilayer hybrid brass/St13 sheets. ADMT J. 2017;10:127–35.
  • [10] Resistance P. Peel resistance of adhesives (T-peel test). Current. 2001;02:3–5. https ://doi.org/10.1520/D1876 -08R15 E01.Copyright.
  • [11] Hassan M, Ali A, Ilyas M, Hussain G, ul Haq I. Experimental and numerical simulation of Steel/Steel (St/St) interface in bilayer sheet metal. Int. J. Light. Mater. Manuf. 2019. https ://doi.org/10.1016/j.ijlmm .2019.03.002.
  • [12] Method ST. D1002 standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading. Annu. B. ASTM Stand. 2009;01:1–5.
  • [13] Tang C, Liu Z, Zhou D, Wu S. Surface treatment with the cold roll bonding process for an aluminum alloy and mild steel. Strength Mater. 2015;47:150–5. https ://doi.org/10.1007/s11223-015-9641-3.
  • [14] Noorman DC. Cohesive zone modelling in adhesively bonded joints: analysis on crack propagation in adhesives and adherends, Master’s thesis, Delft University of Technology. 2014.
  • [15] Hosseini M, Dannesh Manesh H. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–32. https ://doi.org/10.1016/j.matde s.2015.05.010.
  • [16] Movahedi M, Madaah-Hosseini HR, Kokabi AH. The influence of roll bonding parameters on the bond strength of Al-3003/Zn soldering sheets. Mater Sci Eng, A. 2008;487:417–23. https ://doi.org/10.1016/j.msea.2007.10.019.
  • [17] Jing YA, Qin Y, Zang X, Shang Q, Hua S. A novel reductionbonding process to fabricate stainless steel clad plate. J. Alloys Compd. 2014;617:688–98. https ://doi.org/10.1016/j.jallcom.2014.07.186.
  • [18] Monazzah AH, Bagheri R, Reihani SS, Pouraliakbar H. Toughness enhancement in architecturally modified Al6061-5 vol.% SiCp laminated composites. Int. J. Damage Mech. 2014;24:245–62. https ://doi.org/10.1177/10567 89514 52998 4.
  • [19] Hosseini Monazzah A, Pouraliakbar H, Bagheri R, Seyed Reihani SM. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms. Compos. Part B Eng. 2017;125:49–70. https ://doi.org/10.1016/j.compo sites b.2017.05.055.
  • [20] Prior AM. Applications of implicit and explicit finite element techniques to metal forming. J. Mater. Process. Tech. 1994;45:649–56. https ://doi.org/10.1016/0924-0136(94)90413 -8.
  • [21] Ducobu F, Rivičre-Lorphčvre E, Filippi E. On the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cutting. Simul Model Pract Theory. 2015;53:1–14. https ://doi.org/10.1016/j.simpa t.2015.02.003.
  • [22] Wang L, Long H. Investigation of material deformation in multipass conventional metal spinning. Mater Des. 2011;32:2891–9. https ://doi.org/10.1016/j.matde s.2010.12.021.
  • [23] Hussain G, Gao L. A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf. 2007;47:419–35. https ://doi.org/10.1016/j.ijmac htool s.2006.06.015.
  • [24] Hussain G, Gao L, Hayat N, Qijian L. The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation. Int J Mach Tools Manuf. 2007;47:2177–81. https ://doi.org/10.1016/j.ijmac htool s.2007.05.001.
  • [25] Hussain G, Gao L, Hayat N, Ziran X. A new formability indicator in single point incremental forming. J Mater Process Technol. 2009;209:4237–42. https ://doi.org/10.1016/j.jmatp rotec.2008.11.024.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9858ada6-46ba-4070-8b11-056f3fe613ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.